

DIPARTIMENTO DI INGEGNERIA

CORSO DI LAUREA IN INGEGNERIA INFORMATICA

SMART CITY E IOT:

UNA SOLUZIONE BASATA SU LORA
PER IL TRACCIAMENTO DI OGGETTI

MOBILI
Tesi di laurea in Laboratorio di Applicazioni Mobili T

Sessione dicembre 2024

Anno Accademico 2023/2024

Presentata da

Massimo Giaccone

Relatore

Prof. Angelo Trotta

Correlatore

Prof. Federico Montori

DIPARTIMENTO DI INGEGNERIA

CORSO DI LAUREA IN INGEGNERIA INFORMATICA

SMART CITY E IOT:

UNA SOLUZIONE BASATA SU LORA
PER IL TRACCIAMENTO DI OGGETTI

MOBILI
Tesi di laurea Laboratorio di Applicazioni Mobili T

Sessione dicembre 2024

Anno Accademico 2023/2024

Relatore

Prof. Angelo Trotta

Correlatore

Prof. Federico Montori

Presentata da

Massimo Giaccone

Ricordami,

Ora devo andare via,

Ripensa a me,

Sentendo questa melodia,

Uniremo con le note il cuore e le

anime,

Il tuo amore rimarrà

Sempre per me

Coco - Pixar, 2017

Sommario

Questo lavoro si propone di sviluppare un sistema di tracciamento basato sulla tec-
nologia LoRa, utilizzato per monitorare e seguire eventi pubblici di grande portata.
Dopo aver presentato le specifiche della tecnologia LoRa e introdotto il protocollo
LoRaWAN, verranno presentati i dettagli architetturali e implementativi del sistema,
dai microcontrollori agli algoritmi di individuazione del posizionamento ottimale. Infine,
le prestazioni del sistema sono valutate mediante il confronto dei due algoritmi (Brute
Force e Greedy), supportati da un’applicazione per la visualizzazione in tempo reale. I
risultati dimostrano l’efficienza del sistema proposto, evidenziando il compromesso tra
precisione e rapidità computazionale.

i

Indice

Sommario i

Elenco delle figure iv

Elenco delle tabelle v

1 Introduzione 1
1.1 Contesto della ricerca . 1
1.2 Obiettivi tesi . 1
1.3 Struttura del documento . 2
1.4 La Pasqua di Comiso . 2

2 Letteratura 5
2.1 LoRa . 5

2.1.1 Modulazione . 5
2.1.2 Frame LoRa . 7
2.1.3 Parametri utili per la comunicazione 8

2.2 LoRaWAN . 9
2.2.1 Architettura della rete LoRaWAN 10

3 Architettura 13
3.1 Scenario applicativo . 13
3.2 Componenti del sistema . 13

4 Implementazione 17
4.1 Microcontrollori e Sensori . 17

4.1.1 Implementazione hardware: codice Arduino e configurazione . . . 20
4.2 Modulo deployment . 23

4.2.1 Algoritmo Brute Force . 29

iii

4.2.2 Algoritmo Greedy . 31
4.3 Sviluppo applicazione Flutter . 33

4.3.1 Introduzione a Flutter . 33
4.3.2 Struttura . 34
4.3.3 Librerie e dipendenze utilizzate 35
4.3.4 Gestione dati GPS e integrazione con il backend 35

5 Valutazioni performance 41
5.1 Confronto algoritmi . 41
5.2 Schermate principali app . 47

6 Conclusioni 51
6.1 Sintesi dei risultati . 51
6.2 Miglioramenti e sviluppi futuri . 52

Bibliografia 53

Ringraziamenti 55

Elenco delle figure

1.1 Uscita dei simulacri dalla basilica . 3

2.1 Rappresentazione temporale di un chirp in modulazione CSS: (a) Chirp
grezzo, (b) Chirp ritardato di τm, (c) Chirp avanzato di Ts − τm (1) . . 6

2.2 Esempio di preambolo con up-chirped (2) 7
2.3 Struttura del frame LoRa (3) . 8
2.4 Architettura LoRaWAN . 10

3.1 Architettura del sistema . 14

4.1 Schema elettronico Trasmettitore . 19
4.2 Schema elettronico Ricevitore . 19
4.3 Rappresentazione Eq. (4.2) . 27
4.4 Rappresentazione Eq. (4.3) . 27
4.5 Rappresentazione Eq. (4.4) . 28

5.1 Posizionamento 2D dispositivi e percorso - Brute Force 44
5.2 Posizionamento 2D dispositivi e percorso - Greedy 44
5.3 PDR stimato per ogni punto del percorso - Brute Force 45
5.4 PDR stimato per ogni punto del percorso - Greedy 45
5.5 Posizionamento 3D dispositivi e percorso - Brute Force 46
5.6 Posizionamento 3D dispositivi e percorso - Greedy 46
5.7 Schermata iniziale . 47
5.8 Permessi necessari . 47
5.9 Schermata galleria . 48
5.10 Schermata con il programma relativo all’evento 48
5.11 Schermata informativa . 49

v

Elenco delle tabelle

4.1 Risultati test svolti con ricevitore fermo ad’altezza uomo, meteo sereno. 24
4.2 Risultati test svolti con ricevitore posto in un palazzo al quinto piano,

meteo sereno, leggermente trafficato. 24
4.3 Risultati test svolti con ricevitore posto in un palazzo all’ottavo piano,

meteo piovoso con forte vento. 24

5.1 Confronto tra algoritmi Brute Force e Greedy 42

vii

1
Introduzione

1.1 Contesto della ricerca

Negli ultimi anni, nel contesto delle città intelligenti, l’Internet of Things (IoT) ha
rivoluzionato numerosi settori, introducendo soluzioni innovative per la raccolta, l’ela-
borazione e la trasmissione dei dati in tempo reale. Grazie alla capacità di connettere
dispositivi intelligenti e automatizzare processi, l’IoT si è affermato come una tecnologia
abilitante per applicazioni in qualsiasi ambito quotidiano.

Un elemento chiave nell’ecosistema IoT è la capacità di comunicazione a lungo raggio,
particolarmente rilevante per applicazioni distribuite che richiedono il monitoraggio
continuo di oggetti mobili su ampie aree geografiche. A questo scopo, la selezione di
una tecnologia di comunicazione adeguata è fondamentale per garantire affidabilità,
scalabilità ed efficienza. Tra le tecnologie emergenti in questo campo, LoRa (Long
Range) e il protocollo LoRaWAN si sono distinte per le loro caratteristiche uniche:
ampia copertura, basso consumo energetico e costi relativamente contenuti.

Queste tecnologie si rivelano particolarmente efficaci in scenari in cui l’infrastruttu-
ra tradizionale non è facilmente implementabile o economicamente sostenibile, come
ambienti urbani densi o applicazioni su larga scala con numerosi nodi distribuiti.

Inoltre, la loro capacità di funzionare efficacemente con dispositivi alimentati a
batteria per periodi prolungati senza interventi di manutenzione aggiuntivi, li rende
particolarmente adatti per contesti operativi impegnativi.

1.2 Obiettivi tesi

Questa tesi si pone l’obiettivo di progettare e sviluppare un sistema di tracciamento
capace di monitorare eventi pubblici dinamici. Gli obiettivi specifici includono:

• Progettazione del sistema: sviluppo di un’architettura modulare che compren-
da dispositivi trasmittenti, riceventi e la logica per la raccolta ed elaborazione dei
dati;

• Ottimizzazione del posizionamento: implementazione e confronto di algoritmi
per massimizzare la copertura del percorso dell’evento;

1

1.3. STRUTTURA DEL DOCUMENTO CAPITOLO 1. INTRODUZIONE

• Interazione utente: creazione di un’applicazione che consenta di visualizzare in
tempo reale la posizione degli oggetti monitorati;

1.3 Struttura del documento

La tesi è strutturata in modo da fornire una visione completa e articolata del lavoro svolto,
partendo dalle basi teoriche fino ad arrivare all’implementazione pratica e all’analisi dei
risultati.

Nel Capitolo 2 viene introdotta la tecnologia LoRa e il protocollo LoRaWAN, con
una panoramica dettagliata delle loro principali caratteristiche, vantaggi e limitazioni.
Questa parte offre una comprensione del contesto tecnologico, evidenziando la loro
applicabilità per i sistemi IoT a lungo raggio.

Il Capitolo 3 descrive l’architettura del sistema proposto, spiegate le configurazioni
dei dispositivi trasmittenti e riceventi, con un’attenzione particolare alla modularità del
sistema e alla sua capacità di adattarsi a contesti applicativi differenti.

Nel Capitolo 4 viene analizzata in dettaglio l’architettura del sistema, includendo i
particolari implementativi. Vengono descritti i dispositivi utilizzati, il modulo di deploy
preliminare, la selezione degli algoritmi di ottimizzazione e lo sviluppo dell’applicazione
finale.

Nel Capitolo 5 vengono approfonditi gli algoritmi di ottimizzazione Brute Force
e Greedy utilizzati per il posizionamento dei dispositivi riceventi, evidenziandone i
dettagli implementativi, le differenze concettuali e i rispettivi vantaggi e svantaggi.
Successivamente, si analizzano le prestazioni del sistema attraverso i risultati degli
esperimenti condotti, corredati da un confronto grafico tra le soluzioni proposte dai due
algoritmi. Infine, viene presentata l’applicazione mobile sviluppata, descrivendone le
principali schermate.

Infine, nel Capitolo 6 vengono tratte le conclusioni e si discutono gli sviluppi futuri.
In questa parte si analizzano i risultati ottenuti, valutando le prestazioni complessive
del sistema e identificando le principali limitazioni. Vengono inoltre proposte possibili
direzioni per il miglioramento e l’estensione del lavoro, sia dal punto di vista tecnologico
che applicativo.

1.4 La Pasqua di Comiso

Tra i numerosi eventi che si prestano a un simile approccio tecnologico, ho scelto la
tradizionale processione pasquale di Comiso. Questo evento è uno dei momenti più
sentiti della città iblea. La tradizione della "Paci" è una delle poche in Sicilia che

2

1.4. LA PASQUA DI COMISO CAPITOLO 1. INTRODUZIONE

Figura 1.1. Uscita dei simulacri dalla basilica

combina elementi di origine bizantina con influenze catalane, retaggio della dominazione
aragonese. Questo mix culturale ha reso la Pasqua di Comiso un evento unico, capace
di attrarre visitatori da tutta l’isola e oltre.

Sin dal Medioevo, la città ha sviluppato un profondo culto mariano, consolidato nei
secoli attraverso celebrazioni che hanno trovato il loro centro spirituale nella Basilica
dell’Annunziata. Questa devozione alla Madonna Annunziata, insieme alla tradizione
pasquale, dove avviene l’incontro tra i simulacri di Gesù Risorto e della Madonna, è
profondamente radicata nella cultura religiosa e sociale di Comiso.

La processione si svolge lungo tutta la giornata della domenica di Pasqua e rappre-
senta un momento esemplificativo della devozione della comunità. Il rito dell’incontro
tra i simulacri, accompagnato dal canto dei bambini vestiti da "angioletti", evoca un
forte simbolismo di pace e resurrezione.

La processione non è solo un evento religioso, ma anche un momento di grande
partecipazione comunitaria. Generazioni di fedeli hanno contribuito a mantenere viva
questa tradizione, che continua a essere un simbolo di identità culturale e spirituale per
gli abitanti di Comiso. La devozione alla Madonna Annunziata si manifesta non solo
attraverso la processione, ma anche con le celebrazioni liturgiche e le confraternite che
si sono sviluppate nei secoli per sostenere e tramandare queste tradizioni(4).

Il lungo percorso della processione attraversa le vie principali di Comiso, fermandosi
davanti ad ogni chiesa e in luoghi simbolici della città. La logistica dell’evento richiede
un notevole coordinamento, con la collaborazione delle autorità locali, poichè muove la

3

1.4. LA PASQUA DI COMISO CAPITOLO 1. INTRODUZIONE

partecipazione di migliaia di persone.
Questo evento rappresenta un’occasione ideale per implementare un sistema di

monitoraggio tecnologico. Attraverso dispositivi basati su tecnologie come LoRa, è
possibile tracciare in tempo reale il movimento dei simulacri e visualizzare la loro
posizione su una mappa interattiva. Questa innovazione non solo arricchisce l’esperienza
dei partecipanti, ma consente una gestione più efficiente del flusso della processione,
migliorando la sicurezza e la comunicazione con i fedeli.

4

2
Letteratura

2.1 LoRa

La tecnologia LoRa (acronimo di Long Range) è un sistema di comunicazione wireless
a lungo raggio che utilizza una modulazione a spettro espanso1 chiamata Chirp Spread
Spectrum (CSS). Questa utilizza un segnale sinusoidale (chirp), la cui frequenza varia in
maniera lineare in relazione al tempo per trasmettere segnali su lunghe distanze. L’uso
del chirp permette di operare nell’intera larghezza di banda, distribuendo il segnale su
una vasta gamma di frequenze, garantendo robustezza contro il degrado del canale di
comunicazione da interferenze, come ad esempio l’in-band jamming e l’effetto Doppler.

LoRa opera all’interno della banda ISM (Industrial, Scientific, Medical), cioè la por-
zione di spettro elettromagnetico riservato dall’ITU (International Telecommunication
Union) alle applicazioni di radiocomunicazioni non commerciali, ma per uso industriale,
scientifico e medico. In Europa, la banda ISM utilizzata per le comunicazioni LoRa è
principalmente quella a 433 MHz e 868 MHz, che garantisce un buon compromesso tra
portata della trasmissione e capacità di attraversamento del segnale.

2.1.1 Modulazione

A differenza di altre modulazioni come la Frequency Shift Keying (FSK), che utilizza fre-
quenze discrete per rappresentare i bit, LoRa sfrutta un "chirp", che varia gradualmente
in frequenza durante un periodo di tempo.

Lo Spreading Factor (SF) è un parametro fondamentale della modulazione LoRa.
Esso rappresenta il numero di bit codificati in ciascun simbolo trasmesso, con

SF ∈ {7, 8, 9, 10, 11, 12}

dove valori più alti aumentano la distanza di comunicazione, ma di contro riducono
il tasso di trasmissione dei dati (Data Rate, DR). Lo SF rappresenta quindi un
compromesso tra la robustezza del segnale e la velocità di trasmissione dei dati: con
un SF più alto, la sensibilità del ricevitore aumenta, ma aumenta anche il tempo di
trasmissione del pacchetto, con conseguente maggiore consumo energetico.

1Tecnica di trasmissione: l’informazione viene trasmessa in un intervallo più grande del necessario,
con l’obiettivo di migliorare il rapporto segnale/rumore, diminuendo notevolmente le interferenze.

5

2.1. LORA CAPITOLO 2. LETTERATURA

Figura 2.1. Rappresentazione temporale di un chirp in modulazione CSS: (a) Chirp
grezzo, (b) Chirp ritardato di τm, (c) Chirp avanzato di Ts − τm (1)

La relazione tra SF e il numero di chip per simbolo (N) è espressa dalla seguente
formula:

SF = log2(N)

Pertanto, il numero di simboli possibili è dato da:

N = 2SF

Successivamente, ad ogni simbolo n, dove n ∈ {0, ..., N − 1}, viene associato un
chirp. I chirp vengono definiti up-chirp quando la frequenza aumenta linearmente, e
down-chirp quando la frequenza diminuisce. La larghezza di banda del chirp è pari alla
larghezza di banda B del segnale CSS. In LoRa, la larghezza di banda può assumere i
seguenti valori:

B ∈ {125 MHz, 250 MHz, 500 MHz}

Il chirp associato al simbolo n viene ottenuto applicando un ritardo τn = n
B a un

chirp grezzo, ovvero un chirp up o down su tutto il periodo Ts. Il chirp grezzo al di fuori
dell’intervallo [−Ts/2, Ts/2] viene riportato ciclicamente nell’intervallo [−Ts/2, Ts/2+τm],
come mostrato nella Figura 2.1, dove

6

2.1. LORA CAPITOLO 2. LETTERATURA

fc(t) = ±
(

B

Ts

)
· t

Quindi, il chirp modulato relativo alla trasmissione del simbolo n può essere scritto
in due parti:

• Per t ∈
[
−Ts

2 , −Ts
2 + τm

]
, la rampa (in salita o in discesa) del chirp grezzo

anticipata nel tempo Ts − τm;

• Per t ∈
[
−Ts

2 + τm, −Ts
2

]
, la rampa (in salita o in discesa) del chirp grezzo

anticipata nel tempo τm.

Grazie a questa divisione, si ottiene un segnale chirp che è continuo e ciclico, garan-
tendo che non vi siano discontinuità che possano ridurre la qualità della trasmissione. La
continuità del segnale è molto importante per la robustezza contro il rumore e le interfe-
renze, rendendo la comunicazione LoRa efficace anche su lunghe distanze. Inoltre, questa
struttura ciclica facilita la sincronizzazione tra trasmettitore e ricevitore, permettendo
una decodifica più efficiente e una maggiore sensibilità del segnale. Complessivamente,
questa tecnica assicura un compromesso ottimale tra la distanza di trasmissione e il
consumo energetico, garantendo affidabilità e stabilità nella comunicazione.

In aggiunta, il livello fisico di LoRa utilizza il Codice di Hamming come schema
di correzione degli errori, inserendo dei bit di parità che garantiscono che la differenza
tra i vari messaggi sia abbastanza grande da poter correggere gli errori. In questo modo
vengono prodotti dei messaggi ridondanti, ma sicuri e affidabili.

2.1.2 Frame LoRa

L’azienda Semtech, membro fondatore di LoRa Alliance, ha specificato un formato fisico
del frame che viene utilizzato nei trasmettitori e ricevitori LoRa.

Figura 2.2. Esempio di preambolo con up-chirped (2)

7

2.1. LORA CAPITOLO 2. LETTERATURA

Un frame inizia con un preambolo: in Figura 2.2, una sequenza di otto chirp in
salita e costanti che coprono l’intera banda di frequenza. Gli ultimi due chirp sono
quelli che codificano la sync word, un byte utilizzato per distinguere le reti LoRa che
utilizzano la stessa banda di frequenza. Dopo l’ottetto di up-chirp seguono due più un
quarto di down-chirp, per una durata di 2,25 simboli, che permette la sincronizzazione
della trasmissione nel tempo. La durata totale del preambolo può essere configurata tra
10,25 e 65539,25 simboli. A seguire c’è la trasmissione dei simboli che identificano il
payload, e quindi i dati da trasmettere.

Dopo il preambolo, c’è un header opzionale che, se presente, viene trasmesso tramite
un code rate di 4/8, che definisce la dimensione del dato (in byte). L’header include
anche un tasso di codifica usato per la trasmissione e, se presente, un CRC (Cyclic
Redundancy Check) di 16 bit per il payload, tecnica di controllo per verificare l’integrità
dei dati.

Figura 2.3. Struttura del frame LoRa (3)

2.1.3 Parametri utili per la comunicazione

La tecnologia LoRa offre quindi una soluzione versatile per la comunicazione a lungo
raggio e a basso consumo energetico. La comprensione dei seguenti parametri è necessaria
per comprendere la modulazione che utilizza LoRa e per ottimizzare le prestazioni di
rete, adattandosi alle diverse condizioni di comunicazione.2

2LoRa for the Internet of Things(5)

8

2.2. LORAWAN CAPITOLO 2. LETTERATURA

• RSSI (Received Signal Strength Indicator)
Il RSSI è un indicatore della potenza del segnale ricevuto, misurato in milliwatt
(mW) ma comunemente espresso in dBm. Questo valore fornisce una misura
della qualità del segnale che il ricevitore sta ricevendo, infatti è direttamente
proporzionale alla qualità di comunicazione. Valori tipici di RSSI in LoRa variano
da -30 dBm (segnale forte) a -120 dBm (segnale molto debole);

• TP (Trasmission Power)
Il TP o potenza di trasmissione è la potenza con cui il trasmettitore invia il
segnale. Un valore più elevato di TP aumenta la portata della comunicazione, ma
comporta anche un maggiore consumo di energia. Il controllo della potenza di
trasmissione è importante per ottimizzare l’efficienza energetica nei dispositivi
LoRa, che spesso operano con alimentazione a batteria;

• CF (Carrier Frequency)
La Carrier Frequency (CF) è la frequenza centrale attorno alla quale il segnale
LoRa viene modulato. La frequenza dipende dalla banda di operazione scelta e
varia a seconda della regione geografica. Ovviamente, la scelta della frequenza
influisce direttamente sulla portata del segnale e sulla suscettibilità alle interferenze;

• SNR (Signal to Noise Ratio)
Il Signal to Noise Ratio (SNR) è il rapporto tra la potenza del segnale ricevuto
e il livello di rumore di fondo.

2.2 LoRaWAN

LoRaWAN (Long Range Wide Area Network) è un protocollo di comunicazione
LPWAN (Low Power Wide Area Networking) progettato per la trasmissione di dati tra
dispositivi dell’Internet of Things3. Basato sulla tecnologia di modulazione LoRa,
LoRaWAN opera nello strato MAC (Media Access Control) dello stack OSI e fornisce
una rete di ampia copertura, scalabile, adatta per le applicazioni in cui la durata della
batteria di un dispositivo e le lunghe distanze rappresentano una criticità. Questo
protocollo definisce le modalità di accesso al canale e la gestione della comunicazione
tra i dispositivi IoT e la rete. La sua principale caratteristica è la gestione di un sistema
di accesso al canale che permette a più dispositivi di condividere lo stesso mezzo di
comunicazione senza interferire tra loro.

3Che cos’è LoRaWAN, AWS

9

2.2. LORAWAN CAPITOLO 2. LETTERATURA

Figura 2.4. Architettura LoRaWAN

2.2.1 Architettura della rete LoRaWAN

La Figura 2.4 rappresenta l’architettura che sta alla base di tutte le applicazioni IoT
che utilizzano questo protocollo. In una rete LoRaWAN, la comunicazione avviene tra
diversi elementi che interagiscono per consentire la corretta esecuzione del sistema.

I dispositivi finali end nodes sono gli elementi principali in cui avviene il moni-
toraggio. Questi sono tipicamente localizzati in posizioni remote e hanno il compito
di raccogliere i dati sull’ambiente circostante. Per questo motivo, sono progettati per
funzionare in autonomo e con un basso consumo energetico.

Il gateway LoRaWAN è il dispositivo che riceve le comunicazioni dai punti finali e
le inoltra all’infrastruttura di supporto di rete, cioé la parte della rete che collega la
rete LoRa ad altri sistemi. Questa può essere costituita da una rete Ethernet, cellulare
o qualsiasi altro tipo di connessione, sia cablata che wireless. I gateway LoRa sono
connessi al server di rete LoRa tramite connessioni IP standard, il che significa che i
dati viaggiano usando protocolli comuni e possono essere integrati in qualsiasi rete di
telecomunicazioni, pubblica o privata.

Il server di rete coordina l’intera rete. Il suo ruolo è cruciale per garantire che la
rete sia efficiente e che i dati siano instradati correttamente dal gateway ai dispositivi
finali.

Infine, l’application server in una rete LoRaWAN è la parte del sistema che
riceve i dati elaborati dal network server, li analizza o li utilizza per eseguire azioni
specifiche. È un componente fondamentale per garantire che i dati raccolti dai dispositi-

10

2.2. LORAWAN CAPITOLO 2. LETTERATURA

vi IoT possano essere utilizzati per scopi concreti e interagire con gli utenti o altri sistemi.

La topologia di una rete LoRaWAN segue quindi il modello "stars-of-stars", dove i
dispositivi finali comunicano con i gateway, che a loro volta inoltrano i dati al server di
rete centrale. La comunicazione con i dispositivi finali è generalmente bi-direzionale,
ossia i dispositivi possono inviare dati al server, ma anche ricevere comandi o risposte
da esso. Inoltre, è possibile supportare operazioni multicast, che sono utili per inviare
aggiornamenti software o altri messaggi di massa a più dispositivi contemporaneamente.

11

3
Architettura

3.1 Scenario applicativo

I grandi eventi pubblici, come parate, cortei e manifestazioni, coinvolgono un’enorme
mole di partecipanti che si muovono attraverso le zone urbane lungo percorsi stabiliti.
In questi contesti, la necessità di seguire e monitorare il flusso di queste persone in
tempo reale è fondamentale per una migliore esperienza dell’evento.

La capacità di tracciare oggetti mobili in contesti urbani rientra nelle applicazioni
moderne delle smart-city, dove l’utilizzo e l’integrazione di sensori, reti di comunicazione
e complessi sistemi di elaborazione consente una gestione più efficace delle risorse.

Il monitoraggio di oggetti mobili in un contesto di smart-city sfrutta delle tecnologie
innovative per recuperare, trasmettere e analizzare i dati in modo rapido ed efficace.
Queste tecnologie trovano applicazioni in numerosi scenari, come la gestione del traffico,
della logistica urbana e, appunto, il tracciamento di eventi dinamici.

L’obiettivo primario è garantire una visione costante e aggiornata in tempo reale del
movimento di persone e/o oggetti, in maniera da ottimizzare il coordinamento urbano e
migliorare la risposta a situazioni in continuo cambiamento.

3.2 Componenti del sistema

Per raggiungere questo obiettivo, come si vede in Figura 3.1, l’architettura si compone di
diversi moduli interconnessi che gestiscono il flusso di dati dalla raccolta delle coordinate
alla visualizzazione nell’applicazione.

• Dispositivi di tracciamento
Gli oggetti mobili sono equipaggiati con dispositivi che consentono di rileva-
re le coordinate GPS e trasmetterle in tempo reale, garantendo un corretto
funzionamento per l’intera durata dell’evento.

• Ponti
I ponti hanno il compito di ricevere le coordinate GPS trasmesse dai dispositivi.
Inoltre, sono collegati ad Internet, per permettere il trasferimento dei dati verso il
server.

13

3.2. COMPONENTI DEL SISTEMA CAPITOLO 3. ARCHITETTURA

Figura 3.1. Architettura del sistema

• Server di Raccolta
Server che riceve le coordinate GPS dai ponti, le processa e le memorizza in un
database centralizzato. Questo è il primo responsabile della gestione dei dati,
utilizzati per aggiornamenti in tempo reale.

• Database
Il database memorizza tutte le coordinate GPS ed è fondamentale per la re-
gistrazione continua delle informazioni e per garantire che i dati siano sempre
disponibili.

• Server di Richiesta
Il server di richiesta rappresenta l’elemento che permette l’interazione tra applica-
zione e database. Ha il compito di recuperare i dati GPS dal database e inviarli
all’applicazione, garantendo aggiornamenti in tempo reale.

• Applicazione mobile
L’applicazione offre la possibilità di visualizzare la posizione dell’evento su una
mappa in tempo reale. Gli utenti possono seguirlo, visualizzare il percorso e
ricevere aggiornamenti su eventi significativi.

• Servizio di mappe
Integrato nell’applicazione mobile, il servizio di mappe permette di graficare in
una mappa la posizione dell’utente e dell’evento.

14

3.2. COMPONENTI DEL SISTEMA CAPITOLO 3. ARCHITETTURA

• Modulo di deploy dei ponti
Test preliminari sono stati effettuati per individuare i punti migliori per il
posizionamento, basandosi su parametri come altitudine e percentuale di ricezione.

15

4
Implementazione

Per la realizzazione di un sistema di monitoraggio per oggetti che si muovono in contesti
urbani si è scelto di utilizzare il protocollo LoRa, che opera a livello fisico per consentire
la comunicazione a lungo raggio e a basso consumo energetico. Questa tecnologia
è particolarmente adatta per scenari in cui è necessario trasmettere informazioni su
distanze significative senza compromettere la durata della batteria dei dispositivi.
Secondo quanto concesso dal Piano nazionale di ripartizione delle frequenze
(PNRF)1(6), la banda utilizzata per questo progetto è stata 433MHz.

Il sistema utilizza il protocollo LoRa tramite una serie di microcontrollori e sensori
con la capacità di operare in maniera ottimale anche in condizioni ambientali critiche.
L’architettura progettata garantisce che i dati raccolti dai sensori, in questo caso
coordinate GPS, possano essere inviati in modo stabile e sicuro, supportando una
gestione centralizzata delle informazioni.

Nelle sezioni seguenti verranno illustrati in dettaglio i componenti tecnici dell’integra-
zione del protocollo LoRa, con particolare attenzione alle specifiche dei microcontrollori
e dei sensori impiegati. Verranno poi descritti: il codice sviluppato in Arduino per la
gestione dei dispositivi, il modulo di deployment preliminare per la corretta disposizione
dei dispositivi riceventi e, infine, l’applicazione finale che interagisce con l’utente.

L’obiettivo è presentare una soluzione robusta ed efficiente, fondamentale per
applicazioni di tracciamento in tempo reale.

4.1 Microcontrollori e Sensori

In questo sistema, l’elemento principale è rappresentato da un’ ESP32, microcontrollore
molto utilizzato nelle applicazioni di Internet of Things, data la sua versatilità e le
sue performance. L’ESP32 possiede una connessione Wi-Fi e Bluetooth, utile per
l’interazioni con Internet, ma deve essere affiancato ad un modulo LoRa, per poter
trasmettere o ricevere dati da lunghe distanze, non trascurando il consumo.

Il modulo LoRa scelto è un ricetrasmettitore E32 a 433 MHz, prodotto dall’azienda
EByte, a cui è stata collegata un’antenna SMA per migliorare la qualità e la stabilità

1Il PNRF, o Piano Nazionale di Ripartizione delle Frequenze, è il risultato della pianificazione dello
spettro radio a livello nazionale, mirata a ottimizzare l’efficienza e garantire un utilizzo armonizzato
delle risorse spettrali.

17

4.1. MICROCONTROLLORI E SENSORI CAPITOLO 4. IMPLEMENTAZIONE

del segnale. Il modulo E32, collegato all’alimentazione fornita dall’ESP32, è in grado
di operare sia come trasmettitore che come ricevitore. Per configurare le modalità di
trasmissione, il modulo utilizza i pin M0 e M1. A seconda della loro configurazione, è
possibile selezionare diverse modalità operative2:

• Normale (M0 = 0, M1 = 0): In questa modalità, il modulo E32 può
sia trasmettere che ricevere dati, funzionando in modalità di comunicazione
trasparente;

• Risparmio Energetico (M0 = 0, M1 = 1): Il modulo non trasmette, e la
comunicazione seriale è disattivata. Tuttavia, se riceve un segnale specifico, noto
come WOR (Wake Up on Radio), inviato da un trasmettitore, si risveglia per
gestire la comunicazione;

• Configurazione (M0 = 1, M1 = 1): Permette di configurare i parametri del
modulo, come la frequenza e la velocità di trasmissione, mentre la ricezione e la
trasmissione sono interrotte;

• Wake-Up (M0 = 1, M1 = 0): Invia un segnale WOR (Wake Up on Radio)
per risvegliare un modulo che si trova in modalità sleep.

Il modulo dispone anche di un pin AUX, che fornisce informazioni sul proprio stato
operativo al microcontrollore. Altri pin importanti sono TXD (trasmissione) e RXD
(ricezione), utilizzati per comunicare con l’ESP32.

Per rispettare le normative imposte dal PNRF(6) e ottimizzare l’efficienza energetica,
il sistema utilizza un duty cycle del 10%, il che significa che il modulo LoRa trasmette
solo per il 10% del tempo totale, seguito da un periodo di inattività. Inoltre, il modulo
è configurato per operare alla potenza massima di trasmissione di 500 mW (ca 27 dBm),
garantendo una comunicazione affidabile a lunga distanza.

Ultimo modulo necessario e fondamentale per il sistema è il GPS NEO 6M, un
modulo GPS che fornisce le coordinate di localizzazione in tempo reale. Con un’accura-
tezza di circa 3 m e il basso consumo energetico, rappresenta la scelta ideale per questo
progetto. Come il modulo LoRa, è alimentato dall’ESP32 e comunica con esso tramite i
pin TX e RX per trasmettere i dati relativi alla posizione.

Di seguito verranno mostrati gli schemi elettrici dei dispositivi riceventi e trasmetti-
tori. In Figura 4.1 è rappresentato lo schema elettronico del dispositivo che si occupa

2E32 LoRa Module Datasheet(7)

18

4.1. MICROCONTROLLORI E SENSORI CAPITOLO 4. IMPLEMENTAZIONE

Figura 4.1. Schema elettronico Trasmettitore

Figura 4.2. Schema elettronico Ricevitore

della trasmissione. L’ESP32 alimenta sia il modulo GPS NEO-6M che il modulo LoRa
E32, fornendo una tensione di 3.3V a entrambi. I pin di massa (GND) di ciascun modulo
sono connessi al GND dell’ESP32 per completare il circuito elettrico.

Il modulo GPS è collegato all’ESP32 attraverso il pin TX del GPS, che trasmette i
dati delle coordinate al pin RX dell’ESP32, permettendo al microcontrollore di raccogliere
informazioni di localizzazione.

Il modulo LoRa è connesso all’ESP32 tramite i pin TX e RX, che gestiscono
rispettivamente l’invio e la ricezione dei dati tra i due componenti. I pin M0 e M1 del
modulo LoRa sono collegati per configurare le modalità operative, mentre il pin AUX
fornisce feedback sullo stato del modulo, segnalando all’ESP32 quando è pronto per la
trasmissione o ricezione.

In Figura 4.2, lo schema elettronico del dispositivo ricevente è molto simile a quello

19

4.1. MICROCONTROLLORI E SENSORI CAPITOLO 4. IMPLEMENTAZIONE

del trasmettitore. L’unica differenza significativa è l’assenza del modulo GPS. In questo
caso, il modulo LoRa riceve i dati e li trasmette tramite comunicazione seriale all’ESP32,
che si occupa di processarli.

4.1.1 Implementazione hardware: codice Arduino e configurazione

In questa sezione viene descritta l’implementazione hardware del sistema, con un focus
sul codice Arduino sviluppato. L’obiettivo principale è garantire la corretta interazione
tra il microcontrollore, il modulo GPS e il modulo LoRa, ottimizzando la trasmissione e
la ricezione dei dati in tempo reale.

Codice 4.1. Codice Arduino per dispositivo trasmettitore� �
1 #include "Arduino.h"
2 #include "LoRa_E32.h"
3 #include "TinyGPSPlus.h"
4

5 // Definizione dei pin per LoRa e GPS
6 #define RX_PIN 34 // RX LoRa --> TX ESP32
7 #define TX_PIN 35 // TX LoRa --> RX ESP32
8 #define GPS_RX 26 // RX GPS --> TX ESP32
9 #define GPS_TX 27 // TX GPS --> RX ESP32

10

11 // Oggetto per il modulo LoRa
12 LoRa_E32 e32ttl(RX_PIN, TX_PIN);
13

14 // Oggetto per il modulo GPS
15 HardwareSerial GPS_Serial(1); // Usare la Serial1 per il GPS
16 TinyGPSPlus gps;
17

18 void setup() {
19 Serial.begin(115200); // Serial per monitoraggio
20 e32ttl.begin(); // Inizializzazione del modulo LoRa
21

22 // Configura la porta seriale per il GPS
23 GPS_Serial.begin(9600, SERIAL_8N1, GPS_RX, GPS_TX);
24 delay(500);
25

26 // Configura la potenza di trasmissione del modulo LoRa
27 e32ttl.setPower(POWER_20); // Configura la potenza massima di trasmissione

a 500 mW (20 dBm)
28 }

20

4.1. MICROCONTROLLORI E SENSORI CAPITOLO 4. IMPLEMENTAZIONE

29

30 void loop() {
31 // Variabili per memorizzare le coordinate GPS
32 float latitude = 0.0;
33 float longitude = 0.0;
34 bool newData = false;
35

36 // Leggi i dati dal modulo GPS e aggiorna il parser
37 while (GPS_Serial.available()) {
38 if (gps.encode(GPS_Serial.read()))
39 newData = true;
40 }
41

42 if (newData && gps.location.isValid()) {
43 // Recupera le coordinate GPS
44 latitude = gps.location.lat();
45 longitude = gps.location.lng();
46

47 // Prepara il messaggio con le coordinate GPS
48 char msg[50];
49 snprintf(msg, sizeof(msg), "Lat:%.6f;Lon:%.6f", latitude, longitude);
50

51 // Invia il messaggio tramite LoRa E32
52 ResponseStatus rs = e32ttl.sendBroadcastFixedMessage(6, msg);
53

54 // Stampa il messaggio e lo stato della trasmissione
55 Serial.println(msg);
56 Serial.println(rs.getResponseDescription());
57 } else if (!gps.location.isValid()) {
58 Serial.println("Posizione GPS non valida.");
59 }
60

61 // Rispetta il duty cycle del 10%: 1 secondo di trasmissione -> 9 secondi
di attesa

62 delay(9000); // Aspetta 9 secondi per rispettare il duty cycle
63 }
64

65 }� �

21

4.1. MICROCONTROLLORI E SENSORI CAPITOLO 4. IMPLEMENTAZIONE

Codice 4.2. Codice Arduino per dispositivo ricevente� �
1 #include "Arduino.h"
2 #include "LoRa_E32.h"
3 #include <WiFi.h>
4 #include <HTTPClient.h>
5

6 // Definizione dei pin per LoRa
7 #define RX_PIN 34 // RX LoRa --> TX ESP32
8 #define TX_PIN 35 // TX LoRa --> RX ESP32
9

10 // Credenziali WiFi
11 const char* ssid = "nome-rete";
12 const char* password = "psw";
13 const char* serverName = "http://192.168.1.1:5000/esp32";
14

15 // Oggetto per il modulo LoRa
16 LoRa_E32 e32ttl100(RX_PIN, TX_PIN);
17

18 void setup() {
19 Serial.begin(115200); // Serial per monitoraggio
20 e32ttl100.begin(); // Inizializzazione del modulo LoRa
21 delay(500);
22 Serial.println("Ricevitore LoRa E32 pronto.");
23

24 // Connessione WiFi
25 WiFi.begin(ssid, password);
26 while (WiFi.status() != WL_CONNECTED) {
27 delay(1000);
28 Serial.println("Connecting to WiFi...");
29 }
30 Serial.println("Connected to WiFi");
31 delay(2000);
32 }
33

34 void loop() {
35 // Controlla se ci sono dati disponibili dal modulo LoRa
36 if (e32ttl100.available() > 0) {
37

38 // Ricevi il messaggio
39 ResponseContainer rc = e32ttl100.receiveMessage();
40 String data = rc.data;

22

4.2. MODULO DEPLOYMENT CAPITOLO 4. IMPLEMENTAZIONE

41

42 // Se c’e’ un errore, stampa la descrizione dell’errore
43 if (rc.status.code != 1) {
44 Serial.println(rc.status.getResponseDescription());
45 } else {
46 // Invia i dati al server se la connessione WiFi e’ attiva
47 if (WiFi.status() == WL_CONNECTED) {
48 HTTPClient http;
49 http.begin(serverName);
50 http.addHeader("Content-Type", "text/plain");
51

52 // Invia il messaggio tramite HTTP POST
53 int httpResponseCode = http.POST(data);
54

55 if (httpResponseCode > 0) {
56 String response = http.getString();
57 Serial.println("HTTP Response code: " + String(httpResponseCode));
58 Serial.println("Server Response: " + response);
59 } else {
60 Serial.print("Errore nella richiesta HTTP: ");
61 Serial.println(httpResponseCode);
62 }
63 http.end(); // Libera risorse
64 } else {
65 Serial.println("Errore nella connessione WiFi");
66 }
67 }
68 }
69 delay(10000); // Aspetta dieci secondi prima di controllare di nuovo
70 }� �

4.2 Modulo deployment

In questa sezione verranno discusse le motivazioni che hanno portato alla scelta di
specifiche posizioni come possibili "stazioni riceventi". Prima del deployment finale, sono
stati condotti test in cui il trasmettitore inviava messaggi al ricevitore, posizionato ad
un’altezza definita. In questi test, si è tenuto conto sia della distanza dal trasmettitore,
sia del PDR (Packet Delivered Ratio), ovvero la percentuale di ricezione di pacchetti.
Di seguito sono riportate le tabelle con i risultati ottenuti nei test preliminari, in cui il

23

4.2. MODULO DEPLOYMENT CAPITOLO 4. IMPLEMENTAZIONE

ricevitore era posizionato prima ad altezza uomo, poi al quinto piano di un edificio, e
infine all’ottavo piano.

Distanza TX-RX PDR
0m 100%

100m 99%
200m 95%
300m 92%
350m 90%
500m 88%
700m 70%
800m 40%

Tabella 4.1. Risultati test svolti con ricevitore fermo ad’altezza uomo, meteo sereno.

Distanza TX-RX PDR
0m 100%

100m 100%
200m 99%
300m 80%
350m 75%
450m 63%
600m 62%
750m 51%

Tabella 4.2. Risultati test svolti con ricevitore posto in un palazzo al quinto piano,
meteo sereno, leggermente trafficato.

Distanza TX-RX PDR
0m 100%

100m 100%
250m 90%
300m 78%
350m 75%
450m 70%
550m 67%
700m 65%

Tabella 4.3. Risultati test svolti con ricevitore posto in un palazzo all’ottavo piano,
meteo piovoso con forte vento.

Con l’insieme di dati raccolti, l’obiettivo è stato quello di trovare un’approssimazione
mediante una funzione che potesse calcolare la Percentuale di Pacchetti Ricevuti (PDR)

24

4.2. MODULO DEPLOYMENT CAPITOLO 4. IMPLEMENTAZIONE

in relazione alla distanza tra i due dispositivi. Dopo un’attenta analisi, la funzione
scelta come punto di partenza è stata la seguente:

PDR(x) = 100
1 +

(
x
a

)2b
(4.1)

In questa espressione, diversi parametri giocano ruoli chiave nel modellare il com-
portamento della curva di decrescita del PDR rispetto alla distanza x:

• a: controlla il punto di massimo decadimento della curva: definisce la distanza a
cui la ricezione dei pacchetti inizia a scendere rapidamente;

• b: controlla la forma della curva, ovvero quanto è ripida la discesa dopo aver
superato la distanza critica;

• Fattore 100: è un moltiplicatore necessario per garantire che, quando la distanza
x è pari a zero (ossia, quando i dispositivi sono molto vicini), il PDR sia al
100%. Questo fattore assicura che la funzione sia calibrata in maniera da riflettere
correttamente il comportamento ideale del sistema.

Successivamente, per determinare i valori ottimali dei parametri a e b, sono stati
sviluppati script in Python. Questi script hanno utilizzato un metodo di fitting in cui
si fornivano i risultati dei test preliminari e la funzione, per determinare la migliore
approssimazione dei due valori. Di seguito, saranno presentati i codici Python utilizzati
per questa operazione, insieme alle tre diverse versioni delle funzioni ottenute grazie ai
test e alle simulazioni.

Codice 4.3. Script Python per calcolare i valori di a e b� �
1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.optimize import curve_fit
4

5 # Dati di distanza (in metri) e PDR (in percentuale) -- ALTEZZA UOMO --
6 distanze = np.array([0, 100, 200, 300, 350, 500, 700, 800])
7 pdr = np.array([100, 99, 95, 92, 90, 88, 70, 40])
8

9 # Dati di distanza (in metri) e PDR (in percentuale) ---- QUINTO PIANO ----
10 # distanze = np.array([0, 100, 200, 300, 350, 450, 600, 750])
11 # pdr = np.array([100, 100, 99, 80, 75, 63, 62, 51])
12

13 # Dati di distanza (in metri) e PDR (in percentuale) ---- OTTAVO PIANO ----
14 # distanze = np.array([0, 100, 250, 300, 350, 450, 550, 700])

25

4.2. MODULO DEPLOYMENT CAPITOLO 4. IMPLEMENTAZIONE

15 # pdr = np.array([100, 100, 90, 78, 75, 70, 67, 65])
16

17 def bell_shape_decay(x, a, b):
18 return 100 / (1 + (x / a) ** (2 * b))
19

20 # Fit del modello ai dati con stime iniziali per L, k, e x0
21 parametri, covarianza = curve_fit(
22 bell_shape_decay,
23 distanze,
24 pdr,
25 p0=(750, 0.8), # Stime iniziali per a, b
26 bounds=([100, 0.5], [1800, 2.5]),
27 maxfev=20000
28)
29

30 # Otteniamo i parametri a, b
31 a, b = parametri� �

Dopo aver eseguito gli script, ogni volta utilizzando i dati relativi all’altezza conside-
rata, sono state ricavate le seguenti funzioni che modellano il comportamento del PDR
in relazione alla distanza:

PDRaltezza−uomo(x) = 100

1 +
(

x
792,23

)2·2,29 (4.2)

In Fig. 4.3, la funzione Eq. (4.2) rappresenta il PDR calcolato per la distanza quando
il ricevitore è posizionato ad altezza uomo. Si nota che i parametri trovati portano ad
una curva con una rapida discesa, indicando che la ricezione di pacchetti diminuisce in
modo significativo oltre una certa distanza.

PDRquinto−piano(x) = 100

1 +
(

x
731,63

)2·0,86 (4.3)

In Fig. 4.4 viene mostrato l’ Eq. (4.3), calcolata con il ricevitore posizionato al quinto
piano di un edificio. In questo caso, il valore più basso del parametro b indica una curva
meno ripida, suggerendo una transizione più graduale nella perdita di pacchetti con
l’aumento della distanza.

PDRottavo−piano(x) = 100

1 +
(

x
994,87

)2·0,63 (4.4)

26

4.2. MODULO DEPLOYMENT CAPITOLO 4. IMPLEMENTAZIONE

Figura 4.3. Rappresentazione Eq. (4.2)

Figura 4.4. Rappresentazione Eq. (4.3)

27

4.2. MODULO DEPLOYMENT CAPITOLO 4. IMPLEMENTAZIONE

Figura 4.5. Rappresentazione Eq. (4.4)

Infine, in Fig. 4.5 la funzione Eq. (4.4) descrive il PDR per la distanza con il ricevitore
collocato all’ottavo piano. Il parametro a maggiore riflette una distanza critica più alta,
mentre il valore di b più basso rispetto agli altri casi indica una curva ancora più dolce.
Ciò suggerisce che l’effetto della distanza sul PDR è meno drastico, con una perdita di
pacchetti che avviene più gradualmente.

Queste funzioni permettono di caratterizzare e confrontare l’efficacia della ricezione
del segnale a diverse altezze, evidenziando come il posizionamento del ricevitore influenzi
significativamente la qualità della comunicazione. Esse verranno utilizzate come base
per due diversi algoritmi, progettati per individuare le posizioni ottimali dei ricevitori.
L’obiettivo degli algoritmi sarà massimizzare l’efficienza della ricezione del segnale,
tenendo conto delle caratteristiche di decadimento della curva del PDR a seconda della
distanza e dell’altezza del ricevitore.

Gli algoritmi riceveranno in input le posizioni candidate per i dispositivi riceventi, il
numero di dispositivi da collocare, i punti strategici lungo il tragitto della processione
pasquale di Comiso, in corrispondenza di tappe chiave dell’evento, e una soglia di
PDR minimo. Questi parametri saranno fondamentali per determinare quali posizioni
offrano la copertura migliore, assicurando che il PDR superi il valore soglia per garantire
un’efficace comunicazione.

28

4.2. MODULO DEPLOYMENT CAPITOLO 4. IMPLEMENTAZIONE

4.2.1 Algoritmo Brute Force

Il primo approccio è un algoritmo di tipo brute force. Gli algoritmi di forza bruta
propongono un approccio diretto per risolvere problemi che si basano sull’esplorazione
di ogni possibilità, utilizzando la sola potenza computazionale(8). Questo metodo valuta
tutte le possibili combinazioni di posizioni per i ricevitori e calcola il PDR corrispondente
per ciascuna combinazione, utilizzando le funzioni precedentemente calcolate.

L’algoritmo è stato sviluppato per individuare le posizioni ottimali dei dispositivi
riceventi, in modo da garantire una copertura ottimale dei punti lungo un percorso
predefinito e assicurando che la Percentuale di Pacchetti Ricevuti (PDR) sia sempre
superiore a una soglia minima del 50%.

Per ogni combinazione di dispositivi e posizioni possibili, l’algoritmo calcola il PDR
per ciascun punto del percorso. Innanzitutto, si combinano i PDR di tutti i dispositivi
attraverso un approccio basato sulla probabilità complementare; se il PDR totale per un
punto supera la soglia del 50%, quel punto viene considerato coperto, e il PDR medio
viene aggiornato per i punti coperti.

Nonostante la complessità dell’algoritmo brute force, esso rappresenta uno strumento
potente per ottenere la soluzione ottimale e fornisce un benchmark ideale per confrontare
la performance di algoritmi più efficienti, come l’algoritmo greedy.

Codice 4.4. Script Python per algoritmo Brute Force� �
1 import numpy as np
2 from itertools import combinations
3

4 def bell_shape_decay(x, a, b):
5 return 100 / (1 + (x / a) ** (2 * b))
6

7 # Distanza tra due punti
8 def distanza(p1, p2):
9 return np.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)

10

11 def valuta_combinazione(combinazione_dispositivi):
12 copertura_totale = 0
13 pdr_medio_totale = 0
14 num_punti_coperti = 0
15 pdr_per_punto = [] # Lista per salvare il PDR massimo per ogni punto del

percorso
16

17 # Per ogni punto del percorso, calcola il PDR combinato ricevuto dai

29

4.2. MODULO DEPLOYMENT CAPITOLO 4. IMPLEMENTAZIONE

dispositivi
18 for punto in punti_percorso:
19 pdr_complementare = 1 # Iniziamo con 1 e moltiplichiamo per (1 - P_i)
20

21 for dispositivo in combinazione_dispositivi:
22 dist = distanza(dispositivo, punto)
23 # Seleziona la funzione corretta in base all’altitudine del

dispositivo
24 a, b = seleziona_func(dispositivo[2])
25 pdr_attuale = bell_shape_decay(dist, a, b)
26 pdr_attuale = max(0, min(pdr_attuale, 100)) # Assicuriamoci che il

PDR sia tra 0 e 100%
27 pdr_complementare *= (1 - pdr_attuale / 100)
28

29 # Calcola la probabilita’ totale combinata
30 pdr_totale = 1 - pdr_complementare
31 pdr_totale = pdr_totale * 100 # Convertiamo di nuovo in percentuale
32 pdr_per_punto.append(pdr_totale)
33

34 # Verifica se il PDR combinato e’ sopra la soglia
35 if pdr_totale >= soglia_pdr:
36 copertura_totale += 1
37 pdr_medio_totale += pdr_totale
38 num_punti_coperti += 1
39

40 # Calcola PDR medio per i punti coperti
41 if num_punti_coperti > 0:
42 pdr_medio_totale /= num_punti_coperti
43

44 # Ritorna la percentuale di punti coperti e il PDR medio, insieme ai PDR
per punto

45 percentuale_copertura = (copertura_totale / len(punti_percorso)) * 100
46 return percentuale_copertura, pdr_medio_totale, pdr_per_punto
47

48 # Trova la migliore combinazione di dispositivi
49 migliore_copertura = 0
50 miglior_pdr_medio = 0
51 migliore_combinazione = None
52 migliori_pdr_per_punto = []
53

54 for combinazione in combinations(posizioni_candidate, numero_dispositivi):

30

4.2. MODULO DEPLOYMENT CAPITOLO 4. IMPLEMENTAZIONE

55 percentuale_copertura, pdr_medio, pdr_per_punto =
valuta_combinazione(combinazione)

56 if percentuale_copertura > migliore_copertura or (percentuale_copertura
== migliore_copertura and pdr_medio > miglior_pdr_medio):

57 migliore_copertura = percentuale_copertura
58 miglior_pdr_medio = pdr_medio
59 migliore_combinazione = combinazione
60 migliori_pdr_per_punto = pdr_per_punto� �

4.2.2 Algoritmo Greedy

Il secondo approccio è un algoritmo di tipo greedy. Questo metodo adotta una strategia
euristica che seleziona le posizioni migliori in modo incrementale, basandosi su una
scelta locale ottimale a ogni passo. In particolare, l’algoritmo greedy valuta le posizioni
una alla volta e sceglie quella che offre il miglior incremento di PDR complessivo,
fino a coprire l’area desiderata. Anche se non garantisce la soluzione globale ottimale,
l’algoritmo greedy rappresenta una soluzione pratica per scenari più complessi.

In questo caso, si inizia considerando tutte le posizioni candidate per i dispositivi e,
iterativamente, selezionando quella che fornisce la maggiore percentuale di copertura.
Ogni volta che viene posizionato un dispositivo, la posizione selezionata viene rimossa
dall’insieme delle posizioni candidate, e il processo continua fino a posizionare il numero
totale di dispositivi richiesto.

Per ciascun punto del percorso, viene calcolato il PDR complessivo considerando
sia i dispositivi già posizionati sia la nuova posizione candidata. L’efficacia di ciascuna
configurazione è determinata dalla percentuale di punti del percorso coperti, cioè quelli
per cui il PDR supera una soglia minima stabilita al 50%.

Pur senza garantire il raggiungimento della soluzione ottimale, l’algoritmo greedy
rappresenta una migliore scelta in situazioni in cui prestazioni e rapidità sono cruciali,
risultando pratico e scalabile per problemi con un grande numero di dispositivi o punti
del percorso.

Codice 4.5. Script Python per algoritmo Greedy� �
1 import numpy as np
2

3 # Funzione che calcola la distanza euclidea tra due punti (p1 con altitudine
inclusa e p2 senza)

4 def distanza(p1, p2):
5 return np.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)

31

4.2. MODULO DEPLOYMENT CAPITOLO 4. IMPLEMENTAZIONE

6

7 def bell_shape_decay(x, a, b):
8 return 100 / (1 + (x / a) ** (2 * b))
9

10 # Funzione che valuta una singola posizione candidata con i dispositivi
attuali

11 def valuta_posizione(posizione_candidata, dispositivi_posizionati,
punti_percorso):

12 copertura_totale = 0
13 pdr_per_punto = []
14

15 for punto in punti_percorso:
16 pdr_complementare = 1
17

18 # Calcoliamo la copertura con i dispositivi gia’ posizionati
19 for dispositivo in dispositivi_posizionati:
20 dist = distanza(dispositivo, punto)
21 a, b = seleziona_func(posizione_candidata[2])
22 pdr_attuale = bell_shape_decay(dist, a, b)
23 pdr_attuale = max(0, min(pdr_attuale, 100))
24 pdr_complementare *= (1 - pdr_attuale / 100)
25

26 # Calcoliamo la copertura aggiuntiva con il nuovo dispositivo candidato
27 dist = distanza(posizione_candidata, punto)
28 a, b = seleziona_func(posizione_candidata[2])
29 pdr_attuale = bell_shape_decay(dist, a, b)
30 pdr_attuale = max(0, min(pdr_attuale, 100))
31 pdr_complementare *= (1 - pdr_attuale / 100)
32

33 # PDR totale per il punto
34 pdr_totale = 1 - pdr_complementare
35 pdr_totale = pdr_totale * 100 # Convertiamo in percentuale
36

37 if pdr_totale >= soglia_pdr:
38 copertura_totale += 1
39

40 pdr_per_punto.append(pdr_totale)
41

42 percentuale_copertura = (copertura_totale / len(punti_percorso)) * 100
43 return percentuale_copertura, pdr_per_punto
44

32

4.3. SVILUPPO APPLICAZIONE FLUTTER CAPITOLO 4. IMPLEMENTAZIONE

45 # Algoritmo greedy per posizionare i dispositivi
46 def greedy_posizionamento_dispositivi(posizioni_candidate, punti_percorso,

numero_dispositivi):
47 dispositivi_posizionati = []
48

49 for i in range(numero_dispositivi):
50 migliore_copertura = 0
51 miglior_pdr_per_punto = []
52 migliore_posizione = None
53

54 # Trova la migliore posizione candidata
55 for posizione in posizioni_candidate:
56 percentuale_copertura, pdr_per_punto = valuta_posizione(posizione,

dispositivi_posizionati, punti_percorso)
57 if percentuale_copertura > migliore_copertura:
58 migliore_copertura = percentuale_copertura
59 migliore_posizione = posizione
60 miglior_pdr_per_punto = pdr_per_punto
61

62 dispositivi_posizionati.append(migliore_posizione)
63 posizioni_candidate.remove(migliore_posizione) # Rimuoviamo la

posizione selezionata
64

65 return dispositivi_posizionati, migliore_copertura, miglior_pdr_per_punto
66

67 # Esegui l’algoritmo
68 dispositivi_posizionati, copertura_totale, pdr_per_punto =

greedy_posizionamento_dispositivi(posizioni_candidate, punti_percorso,
numero_dispositivi)� �

4.3 Sviluppo applicazione Flutter

4.3.1 Introduzione a Flutter

Flutter è un framework open-source sviluppato da Google per lo sviluppo di applicazioni
mobili cross-platform, utilizzando un unico codice sorgente(9). Una delle sue principali
caratteristiche è l’utilizzo del linguaggio di programmazione Dart, che offre un ambiente
altamente performante e un sistema di rendering basato su widget. In Flutter, tutto è
un widget, ovvero blocchi che costituiscono l’interfaccia utente.

33

4.3. SVILUPPO APPLICAZIONE FLUTTER CAPITOLO 4. IMPLEMENTAZIONE

Una distinzione fondamentale in Flutter è quella tra StatelessWidget e Stateful-
Widget(10):

• StatelessWidget: Rappresenta un widget che non cambia nel tempo. È utilizzato
per creare componenti che rimangono statici una volta costruiti. In questi widget,
tutte le proprietà vengono inizializzate una volta sola e vengono aggiornati solo se
qualcosa è cambiato al loro interno.

• StatefulWidget: Rappresenta un widget che può cambiare dinamicamente in
risposta ad eventi. Sono composti da due parti: il widget stesso e uno stato
separato che viene mantenuto durante il ciclo di vita del widget.

4.3.2 Struttura

L’applicazione Flutter è stata progettata con un’architettura modulare per facilitare la
manutenibilità del codice. La cartella principale lib è suddivisa in diverse sottosezioni
per una gestione efficiente dei componenti e della logica dell’app.

Il file main.dart rappresenta il punto di ingresso dell’applicazione che avvia il
widget principale AppContainer. Esso gestisce la navigazione tra le diverse pagine
dell’applicazione utilizzando una barra di navigazione personalizzata, implementata nel
file bottom_navigation_bar.dart. Le destinazioni di navigazione sono definite nel file
navigation_items.dart, che fornisce icone e etichette per le sezioni principali, ovvero:
Mappa, Galleria e Programma.

L’applicazione utilizza diverse pagine per offrire funzionalità specifiche:

• MapPage: È un StatefulWidget poiché gestisce la visualizzazione della mappa
interattiva. Questa pagina implementa il tracciamento della posizione GPS dell’u-
tente e aggiorna periodicamente la posizione di un marker basato sui dati ricevuti
da un server backend.

• GalleryPage: È un StatefulWidget poiché carica e visualizza un elenco di
immagini da una sorgente remota. Utilizza un FutureBuilder per gestire il
caricamento asincrono delle immagini, e il suo stato viene aggiornato man mano
che le immagini vengono scaricate.

• ProgramPage: Anche questo è un StatefulWidget poiché gestisce un calendario
interattivo che consente all’utente di selezionare date e visualizzare eventi associati.
Il widget mantiene lo stato per gestire le date selezionate e il formato del calendario.

34

4.3. SVILUPPO APPLICAZIONE FLUTTER CAPITOLO 4. IMPLEMENTAZIONE

• InfoPage: Questo componente è un StatelessWidget poiché mostra informazioni
statiche come il nome dell’utente e i dettagli di contatto. Non ha bisogno di
aggiornarsi dinamicamente e quindi non richiede uno stato.

La MyBottomNavigationBar permette all’utente di spostarsi facilmente tra queste
pagine, mentre la MyAppBar fornisce un’interfaccia personalizzata per la parte superiore
dell’app con un pulsante per accedere alle informazioni aggiuntive.

4.3.3 Librerie e dipendenze utilizzate

Lo sviluppo di applicazioni Flutter trae significativo vantaggio dall’ecosistema ricco
di librerie e pacchetti della comunità. Queste risorse consentono l’implementazione
veloce di funzionalità complesse, ottimizzando il processo di sviluppo e migliorando
l’esperienza complessiva dell’utente. Di seguito, verranno presentate le librerie principali,
analizzando le loro specifiche funzionalità e modalità di utilizzo nell’applicazione:

• http: Utilizzata per la comunicazione tramite chiamate HTTP con il backend.
Utilizzata per ottenere le coordinate del marker che si muove(11).

• google_maps_flutter: Fornisce l’integrazione delle mappe interattive di Google.
È impiegata per visualizzare la posizione dell’utente e i marker aggiornati in tempo
reale(12).

• geolocator: Gestisce l’ottenimento della posizione GPS dell’utente e la richiesta
dei permessi relativi. È fondamentale per le funzionalità di geolocalizzazione e per
aggiornare la posizione sulla mappa(13).

• permission_handler: Usata per gestire le autorizzazioni richieste dall’app, come
l’accesso alla posizione GPS. Garantisce che l’app operi in conformità con le policy
di sicurezza di iOS e Android(14).

• table_calendar: Un pacchetto per la visualizzazione di calendari interattivi. È
stato implementato per mostrare eventi relativi alle date selezionate(15).

Queste librerie hanno contribuito a rendere lo sviluppo dell’applicazione più rapido ed
efficiente, fornendo soluzioni già realizzate.

4.3.4 Gestione dati GPS e integrazione con il backend

La gestione dei dati GPS e l’integrazione con il backend rappresentano uno degli aspetti
centrali del sistema. Questa funzionalità consente di recuperare le coordinate GPS

35

4.3. SVILUPPO APPLICAZIONE FLUTTER CAPITOLO 4. IMPLEMENTAZIONE

memorizzate nel database lato server, inviate precedentemente dal dispositivo che segue
l’evento. Il recupero delle coordinate avviene tramite la funzione fetchMarkerPosition,
definita nel file map_page.dart. La funzione utilizza i costrutti asincroni Future e
await offerti da Flutter, che permettono di eseguire richieste HTTP in modo non
bloccante. Ogni dieci secondi, una chiamata HTTP viene effettuata per recuperare le
coordinate aggiornate dal server. In caso di risposta corretta, l’oggetto JSON viene
decodificato, ricavando latitudine e longitudine, e la posizione del marker sulla mappa
viene aggiornata utilizzando setState. Inoltre, il controller della mappa mapController

anima la visualizzazione per centrare la nuova posizione, garantendo un’esperienza utente
fluida e reattiva. Questo approccio asincrono è in linea con le esigenze di ottimizzazione
del duty cycle, mantenendo un’efficienza energetica elevata e minimizzando l’uso delle
risorse.

Codice 4.6. Codice Dart per il recupero e l’aggiornamento delle coordinate GPS� �
1 void _startFetchingMarkerPosition() {
2 _timer = Timer.periodic(Duration(seconds: 10), (Timer timer) async {
3 await _fetchMarkerPosition();
4 });
5 }
6

7 Future<void> _fetchMarkerPosition() async {
8 try {
9 // Esegui la chiamata HTTP per ottenere la nuova posizione

10 final response = await
http.get(Uri.parse(’http://192.168.1.3:5001/latest’));

11 if (response.statusCode == 200) {
12 var data = json.decode(response.body);
13 double latitude = data[’latitude’];
14 double longitude = data[’longitude’];
15 setState(() {
16 asyncMarker = Marker(
17 markerId: MarkerId(’async_marker’),
18 position: LatLng(latitude, longitude),
19 infoWindow: InfoWindow(title: ’Updated Position’),
20);
21 });
22 if (mapController != null) {
23 mapController!.animateCamera(CameraUpdate.newLatLng(LatLng(latitude,

longitude)));
24 }

36

4.3. SVILUPPO APPLICAZIONE FLUTTER CAPITOLO 4. IMPLEMENTAZIONE

25 } else {
26 print(’Failed to fetch marker position’);
27 }
28 } catch (e) {
29 print(’Error fetching marker position: $e’);
30 }
31 }� �

Per supportare l’applicazione Flutter, il backend è stato sviluppato utilizzando
Python e Flask, con MongoDB come sistema di gestione del database. I due server si
occupano uno di ricevere i dati GPS dal dispositivo e memorizzarli nel database e l’altro
di fornire le coordinate più recenti all’applicazione Flutter quando richiesto. Di seguito,
sono presentati gli script Python utilizzati per implementare queste funzionalità.

Codice 4.7. Script per aggiungere dati al database� �
1 from flask import Flask
2 import certifi
3 from pymongo import MongoClient
4 from flask_cors import CORS
5 import json, re
6

7 app = Flask(__name__)
8 CORS(app) # Abilita CORS per tutte le origini
9

10 # Configurazione della connessione MongoDB
11 client = MongoClient(
12 ’mongodb+srv://user:pws@esempio0.m76yo.mongodb.net’,
13 tlsCAFile=certifi.where()
14)
15 db = client[’tesi’]
16 collection = db[’coordinate’]
17

18 @app.route(’/esp32’, methods=[’POST’])
19 def receive_data():
20 try:
21 data = request.data.decode(’utf-8’)
22 # Utilizzare una regex per estrarre la latitudine e la longitudine
23 match = re.search(r"Lat:\s*([\d.]+),\s*Lng:\s*([\d.]+)", data)
24 if match:
25 latitude = float(match.group(1))
26 longitude = float(match.group(2))

37

4.3. SVILUPPO APPLICAZIONE FLUTTER CAPITOLO 4. IMPLEMENTAZIONE

27

28 # Creare il documento da inserire in MongoDB
29 document = {
30 "latitude": latitude,
31 "longitude": longitude
32 }
33

34 # Inserire il documento nel database
35 collection.insert_one(document)
36 return f"Data received and stored: {data}", 200
37 else:
38 return "Invalid data format", 400
39 except Exception as e:
40 return f"An error occurred: {str(e)}", 500
41

42 if __name__ == ’__main__’:
43 app.run(host=’0.0.0.0’, port=5001, debug=True)� �

Codice 4.8. Script Python per recuperare le coordinate dal database� �
1 from flask import Flask, request, jsonify
2 from pymongo import MongoClient
3 from flask_cors import CORS
4 import certifi
5 import re
6

7 app = Flask(__name__)
8 CORS(app) # Abilita CORS per tutte le origini
9

10 # Configurazione della connessione MongoDB
11 client = MongoClient(
12 ’mongodb+srv://user:pws@esempio0.m76yo.mongodb.net’,
13 tlsCAFile=certifi.where()
14)
15

16 db = client[’tesi’]
17 collection = db[’coordinate’]
18

19 @app.route(’/latest’, methods=[’GET’])
20 def latest():
21 try:

38

4.3. SVILUPPO APPLICAZIONE FLUTTER CAPITOLO 4. IMPLEMENTAZIONE

22 # Recupera l’ultimo documento inserito
23 latest_doc = collection.find().sort(’_id’, -1).limit(1)
24

25 # Verifica se ci sono documenti
26 latest_data = list(latest_doc)
27 if latest_data:
28 # Estrai solo latitude e longitude
29 data_to_return = {
30 ’latitude’: latest_data[0].get(’latitude’),
31 ’longitude’: latest_data[0].get(’longitude’)
32 }
33 return jsonify(data_to_return), 200
34 else:
35 return jsonify({’error’: ’No data found’}), 404
36

37 except Exception as e:
38 app.logger.error(f"Error occurred: {e}")
39 return jsonify({’error’: ’Internal Server Error’}), 500
40

41 if __name__ == ’__main__’:
42 app.run(host=’0.0.0.0’, port=5001, debug=True)� �

Questi due componenti assicurano una gestione efficace dei dati GPS, permettendo
all’app di ricevere aggiornamenti puntuali e affidabili. La combinazione di un backend
solido e un client Flutter ben progettato garantisce una soluzione robusta per applicazioni
di tracciamento in tempo reale.

39

5
Valutazioni performance

In questo capitolo verranno presentati i risultati ottenuti attraverso l’implementazione
dei due algoritmi, Brute Force e Greedy, evidenziando le loro prestazioni e i principali
punti di forza e debolezza. Successivamente, saranno illustrate le schermate principali
dell’applicazione sviluppata in Flutter, fornendo una panoramica dell’interfaccia utente.

5.1 Confronto algoritmi

L’obiettivo è stato valutare l’efficacia e l’efficienza di ciascun algoritmo nell’individuare
le posizioni ottimali per i dispositivi riceventi, tenendo conto delle loro complessità
computazionali e delle risorse richieste.

Nonostante la sua precisione, l’algoritmo di Brute Force non rappresenta sempre la
scelta giusta. Infatti, sebbene questa strategia assicuri la ricerca della soluzione ottimale,
la sua complessità computazionale risulta notevole. Nell’algoritmo alla Sezione 4.2.1, il
numero totale di operazioni effettuate è dato da:

NumOperazioni =
(

N

k

)
× M = N !

k! · (N − k)! × M (5.1)

dove
(N

K

)
rappresenta tutte le possibili combinazioni tra posizioni candidate N e

dispositivik, M rappresenta il numero di punti del percorso che si vuole seguire.
Questo prodotto dimostra come la complessità cresca molto velocemente, rendendo

l’algoritmo poco pratico per scenari con un gran numero di posizioni o punti del percorso.
Anche per valori moderati di N, k, e M, l’algoritmo richiede una quantità significativa
di tempo di calcolo.

A discapito della perfezione, la caratteristica che differenzia l’algoritmo greedy dal
brute force è la sua efficienza, poiché, evitando un’elevata complessità computazionale,
si riesce a selezionare la posizione che massimizza localmente la copertura. Questo porta
ad una riduzione drastica della mole computazionale, riducendo le operazioni a:

Operazioni = N × M × k (5.2)

41

5.1. CONFRONTO ALGORITMI CAPITOLO 5. VALUTAZIONI PERFORMANCE

con N numero di posizioni candidate, M numero di punti del percorso e k numero
di dispositivi utilizzati. Di conseguenza, la complessità computazionale dell’algoritmo
cresce linearmente con il numero di dispositivi e il numero di punti del percorso, ma
rimane significativamente inferiore rispetto alla crescita dell’algoritmo brute force.

Nella Tabella 5.1, sono mostrati i tempi di calcolo dei due algoritmi, ottenuti tramite
simulazioni sul mio computer personale. Le condizioni iniziali prevedono 100 punti del
percorso e 5 dispositivi, mentre il numero di posizioni candidate è stato variato.

Tabella 5.1. Confronto tra algoritmi Brute Force e Greedy

Posizioni candidate(k) Brute Force (s) Greedy (s)
25 24.01 0.05
30 65.62 0.1
50 295.67 0.9
200 NaN 9
300 NaN 15

Per evidenziare ulteriormente le differenze tra l’algoritmo Brute Force e l’algoritmo
Greedy, sono stati realizzati dei grafici che mostrano le scelte effettuate da ciascun
algoritmo rispetto alla disposizione dei dispositivi riceventi. Questi grafici rappresentano
visivamente il risultato delle strategie adottate dai due algoritmi, permettendo di
confrontare la qualità delle soluzioni generate.

I grafici Fig. 5.1, Fig. 5.5, Fig. 5.3 mostrano le soluzioni proposte dall’algoritmo di
Brute Force con 5 dispositivi, 40 punti del percorso, 30 posizioni candidate. La soluzione
ottimale proposta è:

[(1000, −200, 25), (1600, −400, 25), (3000, −200, 25), (3200, 400, 25), (3600, −500, 25)]

Questa disposizione consente una copertura del 100% dei punti del percorso, con un
PDR medio per punto pari al 93,49%.

I grafici Fig. 5.2, Fig. 5.6, Fig. 5.4 rappresentano, invece, i risultati ottenuti dal-
l’algoritmo Greedy, mantenendo gli stessi parametri iniziali. La soluzione trovata
è:

[(100, −100, 25), (1000, −200, 25), (1200, 800, 15), (3400, 600, 15), (3600, −500, 25)]

Anche in questo caso, l’algoritmo garantisce una copertura completa dei punti del
percorso, ma il PDR medio per punto risulta inferiore, pari al 68,73%. Questa differenza
è attribuibile alla natura dell’algoritmo Greedy, che seleziona localmente le posizioni
ottimali senza considerare l’interazione globale tra le scelte successive.

42

5.1. CONFRONTO ALGORITMI CAPITOLO 5. VALUTAZIONI PERFORMANCE

Dall’analisi dei grafici e delle soluzioni proposte dai due algoritmi emergono alcune
osservazioni chiave:

• Qualità della soluzione: l’algoritmo di Brute Force garantisce sempre la
soluzione ottimale, con un PDR medio più elevato rispetto all’algoritmo Greedy.

• Efficienza computazionale: l’algoritmo Greedy riduce significativamente il
tempo di esecuzione, rendendolo praticabile in scenari con un elevato numero
di posizioni candidate e punti del percorso. Tuttavia, questa efficienza viene
raggiunta sacrificando parte della qualità del risultato.

• Distribuzione delle posizioni selezionate: entrambi gli algoritmi tendono a
preferire posizioni situate ai piani superiori. Questo comportamento era prevedibile,
poiché i dispositivi posizionati più in alto beneficiano di una minore interferenza
causata da ostacoli. L’algoritmo Greedy, tuttavia, mostra una maggiore variabilità
nella scelta delle altezze, selezionando in alcuni casi dispositivi a livelli intermedi.

• Impatto sul PDR medio: nonostante il PDR medio ottenuto dall’algoritmo
Greedy sia inferiore, esso supera comunque la soglia richiesta per garantire la
trasmissione affidabile dei dati. Questo lo rende una scelta accettabile in contesti
in cui il tempo di calcolo è un fattore critico.

I risultati evidenziano un chiaro compromesso tra precisione ed efficienza. L’algoritmo
di Brute Force rappresenta la soluzione ideale per ottenere la disposizione ottimale, ma il
suo utilizzo è limitato a scenari con un numero moderato di posizioni candidate e punti
del percorso. Al contrario, l’algoritmo Greedy offre una soluzione più rapida e pratica,
sacrificando parte dell’ottimalità in cambio di una maggiore efficienza. In contesti reali,
la scelta tra i due algoritmi dipenderà dai requisiti specifici dell’applicazione, in termini
di accuratezza richiesta e risorse computazionali disponibili.

43

5.1. CONFRONTO ALGORITMI CAPITOLO 5. VALUTAZIONI PERFORMANCE

Figura 5.1. Posizionamento 2D dispositivi e percorso - Brute Force

Figura 5.2. Posizionamento 2D dispositivi e percorso - Greedy

44

5.1. CONFRONTO ALGORITMI CAPITOLO 5. VALUTAZIONI PERFORMANCE

Figura 5.3. PDR stimato per ogni punto del percorso - Brute Force

Figura 5.4. PDR stimato per ogni punto del percorso - Greedy

45

5.1. CONFRONTO ALGORITMI CAPITOLO 5. VALUTAZIONI PERFORMANCE

Figura 5.5. Posizionamento 3D dispositivi e percorso - Brute Force

Figura 5.6. Posizionamento 3D dispositivi e percorso - Greedy

46

5.2. SCHERMATE PRINCIPALI APP CAPITOLO 5. VALUTAZIONI PERFORMANCE

5.2 Schermate principali app

L’applicazione Flutter sviluppata è stata progettata per offrire un’interfaccia semplice e
intuitiva, facilitando l’interazione dell’utente con le funzionalità principali. Di seguito
sono presentate le schermate principali che compongono l’applicazione.

Figura 5.7. Schermata iniziale Figura 5.8. Permessi necessari

Come mostrato in Fig. 5.7, la schermata iniziale dell’applicazione è costituita dalla
mappa interattiva, che rappresenta il punto di ingresso principale. Questa schermata
consente di visualizzare in tempo reale la posizione degli oggetti tracciati, garantendo
un accesso immediato alle informazioni essenziali. Da qui, l’utente può anche navigare
verso altre sezioni dell’app, attraverso un’interfaccia semplice e intuitiva.

Per garantire il corretto funzionamento dell’applicazione, l’utente deve concedere i
permessi necessari per accedere alla posizione GPS. La Fig. 5.8 mostra la schermata in

47

5.2. SCHERMATE PRINCIPALI APP CAPITOLO 5. VALUTAZIONI PERFORMANCE

cui viene richiesta l’autorizzazione, fondamentale per garantire la funzionalità prioritaria.
La schermata di galleria, mostrata in Fig. 5.9, consente di visualizzare una serie di

immagini, fornendo ulteriori dettagli relativi all’evento o al contesto dell’applicazione.
In Fig. 5.10, viene presentata la schermata relativa al programma. Essa fornisce

informazioni dettagliate sugli eventi pianificati, incluse date, orari e descrizioni. Rappre-
senta una funzionalità chiave per gli utenti che necessitano di una panoramica chiara e
organizzata.

Figura 5.9. Schermata galleria Figura 5.10. Schermata con il
programma relativo all’evento

Infine, la Fig. 5.11 mostra una schermata dedicata alle informazioni sull’applicazione.
Questa sezione può includere dettagli sull’evento, i contatti o informazioni aggiuntive
utili per l’utente.

L’interfaccia è stata realizzata per essere semplice e molto utilizzabile, assicurando

48

5.2. SCHERMATE PRINCIPALI APP CAPITOLO 5. VALUTAZIONI PERFORMANCE

Figura 5.11. Schermata informa-
tiva

un’esperienza fluida anche agli utenti meno esperti.

49

6
Conclusioni

6.1 Sintesi dei risultati

Questo progetto ha approfondito lo sviluppo e l’implementazione di un sistema innovativo
per il tracciamento di oggetti mobili sulla tecnologia LoRa, applicabile in contesti
smart-city. L’obiettivo principale della tesi era progettare un’architettura a moduli e
implementare un sistema efficiente in grado di monitorare in tempo reale eventi dinamici.
Il caso di studio scelto, la processione pasquale di Comiso, ha fornito un esempio concreto
e rappresentativo del sistema.

Il lavoro si è articolato in più fasi. Inizialmente, sono stati analizzate la caratteristiche
della tecnologia LoRa e del protocollo LoRaWAN. Successivamente, si è sviluppata
l’architettura che integra componenti hardware e software, che comprende dispositivi
trasmettitori e riceventi, server per l’eleborazione dei dati e un’applicazione mobile per
la visualizzazione in tempo reale delle informazioni sull’oggetto in movimento.

Un’aspetto chiave è stato lo sviluppo e la sperimentazione di due algoritmi (Brute
Force e Greedy), utilizzati per ottimizzare il posizionamento dei dispositivi ricevitori,
individuando la posizione più adatta in base ai vincoli del contesto operativo.

I test condotti hanno dimostrato l’efficacia del sistema proposto. La combinazione di
LoRa con una logica algoritmica ottimizzata ha permesso di massimizzare la copertura
del percorso monitorato. Il confronto tra gli algoritmi ha evidenziato i punti di forza e i
limiti di ciascun approccio:

• Brute Force: ha garantito la massima precisione nella disposizione dei dispositivi
riceventi, con una copertura completa e un PDR medio per punto molto elevato.
Tuttavia, il costo computazionale ne limita l’applicazione a scenari con un numero
moderato di posizioni candidate.

• Greedy: si è rivelato più adatto a scenari reali grazie alla sua efficienza computa-
zionale. Nonostante un PDR medio per punto inferiore, ha comunque soddisfatto
i requisiti minimi richiesti.

Le simulazioni sul Packet Delivery Ratio (PDR) hanno confermato la robustezza del
modello e la capacità di adattarsi a diverse condizioni ambientali e logistiche.

51

6.2. MIGLIORAMENTI E SVILUPPI FUTURI CAPITOLO 6. CONCLUSIONI

6.2 Miglioramenti e sviluppi futuri

L’architettura sviluppata offre numerose possibilità di espansione:

• Scalabilità: estensione del sistema per monitorare eventi più complessi, con un
maggior numero di dispositivi;

• Integrazione con tecnologie emergenti: sperimentazione con 5G e reti ibride per
aumentare la capacità di trasmissione e la sicurezza dei dati;

• Integrazione del protocollo LoRaWAN: questa integrazione migliorerebbe ulte-
riormente la robustezza, la sicurezza e la scalabilità del sistema, rendendolo più
adatto per applicazioni in contesti urbani o industriali.

• Esperienza utente: potenziamento dell’applicazione mobile con funzionalità avan-
zate, come notifiche in tempo reale e statistiche dettagliate.

In conclusione, questo lavoro ha dimostrato come una combinazione di tecnologie
IoT e algoritmi di ottimizzazione possa offrire soluzioni pratiche per monitorare eventi
complessi, fornendo un valido contributo alla digitalizzazione delle tradizioni e alla
gestione delle smart-city.

52

Bibliografia

[1] G. Ferré and A. Giremus, “LoRa Physical Layer Principle and Performance Ana-
lysis,” in 2018 25th IEEE International Conference on Electronics, Circuits and
Systems (ICECS), pp. 65–68, 2018.

[2] Q. Chaudhari, “Understanding LoRa PHY (Long-Range Physical Layer).” https:
//wirelesspi.com/.

[3] M. A. Ertürk, M. A. Aydin, T. Büyükakkaslar, and H. Evirgen, “A Survey on
LoRaWAN Architecture, Protocol and Technologies,” Future Internet, vol. 11,
p. 216, 10 2019.

[4] Mons. Giovanni Battaglia, Pietre Vive.

[5] M. C. Bor, J. Vidler, and U. Roedig, “LoRa for the Internet of Things,” in Ewsn,
vol. 16, pp. 361–366, 2016.

[6] M. delle Imprese e del Made in Italy, “Piano nazionale di ripartizione delle
frequenze (PNRF).” https://www.mimit.gov.it/it/digitale/gestione-spettro-radio/
piano-nazionale-ripartizione-frequenze.

[7] EByte, E32 LoRa Module Datasheet. EByte Electronic Technology Co., Ltd., 2023.

[8] freeCodeCamp.org, “Brute Force Algorithms Explained.” https://www.
freecodecamp.org/news/brute-force-algorithms-explained/.

[9] Google, “Flutter.” https://flutter.dev.

[10] Google, “Flutter.” https://docs.flutter.dev/get-started/fundamentals/
state-management.

[11] DartDev, “HTTP Package.” https://pub.dev/packages/http.

53

 https://wirelesspi.com/
 https://wirelesspi.com/
 https://www.mimit.gov.it/it/digitale/gestione-spettro-radio/piano-nazionale-ripartizione-frequenze
 https://www.mimit.gov.it/it/digitale/gestione-spettro-radio/piano-nazionale-ripartizione-frequenze
 https://www.freecodecamp.org/news/brute-force-algorithms-explained/
 https://www.freecodecamp.org/news/brute-force-algorithms-explained/
 https://flutter.dev
 https://docs.flutter.dev/get-started/fundamentals/state-management
 https://docs.flutter.dev/get-started/fundamentals/state-management
https://pub.dev/packages/http

BIBLIOGRAFIA BIBLIOGRAFIA

[12] Google, “Google Maps for Flutter.” https://pub.dev/packages/google_maps_
flutter.

[13] BaseFlow, “Geolocator for Flutter.” https://pub.dev/packages/geolocator.

[14] BaseFlow, “Permission Handler for Flutter.” https://pub.dev/packages/permission_
handler.

[15] https://pub.dev/packages/table_calendar.

54

https://pub.dev/packages/google_maps_flutter
https://pub.dev/packages/google_maps_flutter
https://pub.dev/packages/geolocator
https://pub.dev/packages/permission_handler
https://pub.dev/packages/permission_handler
https://pub.dev/packages/table_calendar

Ringraziamenti

Di recente ho partecipato a una conferenza sul diritto d’autore, in particolare su chi
detenga i diritti di un’opera generata tramite intelligenza artificiale. Tra le tante tesi
emerse, una mi ha colpito profondamente: ogni opera ha un artista e una modalità di
realizzazione, che sia un’AI, la pittura a olio, o il lavoro con martello e scalpello. Ma
ciò che conta davvero è il contesto in cui quell’artista ha vissuto: le persone che ha
incontrato, i luoghi che ha frequentato, le esperienze che lo hanno formato. Se Van
Gogh fosse stato mio compagno di corso e ci fossimo presi una birra insieme ogni sabato,
chissà se avrebbe dipinto le sue meraviglie. Ma perché dico questo? Non sto delirando
(anche se scrivere alle 2 di notte ascoltando Perché lo fai di Marco Masini potrebbe
suggerire il contrario). Credo fermamente che il contesto in cui sono nato e cresciuto
abbia giocato un ruolo fondamentale nello sviluppo del mio lavoro e della mia persona.
Ed è proprio per questo che sento il bisogno di ringraziarlo per l’ispirazione che mi ha
regalato.

Innanzitutto, il primo grazie va alla mia famiglia. Al mio papà, il mio primo
supereroe e il mio più grande fan. Sei sempre capace di fare in modo che tutto vada per
il meglio, sostenendomi in ogni sogno e augurandomi sempre il massimo. Le persone che
ci conoscono dicono che abbiamo spesso gli stessi atteggiamenti; questo mi riempie il
cuore di gioia, perché essere come te è esattamente ciò che desidero. Alla mia mamma,
grazie perché da te ho imparato cosa vuol dire lottare e mai arrendersi davanti alle
difficoltà. Mi sei sempre stata accanto nel tuo modo unico e speciale, anche senza tanti
bacini e abbraccini, ma con tante tante tante calorose coccole. Ti ringrazio perché è
grazie a te se sono la persona che sono oggi. Anche qui, chi ci conosce mi dice che: “mi
si u stissu a to ma” e io sbam: 3 metri sopra il cielo: d’altronde si sa che siamo “troppo
bellissimi”. A Gianni, fratellone che spesso diventa fratellino, sopratutto quando alza la
mano destra in macchina per chiedere scusa o far passare le persone. Grazie perché sei
sempre pronto a schierarti dalla mia parte.

Ovviamente, le persone da ringraziare mica finiscono qui: avendo ventordici mila zii
e cinque trilioni di cugini non posso tirarmi indietro dal menzionare anche loro. Grazie

55

a tutti voi perché ognuno di voi ha lasciato qualcosa in me: chi perché “chi lo vuole un
soldino”, chi perché i pranzi al sabato dopo scuola, chi perché viva il Milan, chi perché
“Filippo Maglione”. In tutti i momenti più belli di cui ho memoria, c’è sempre qualcuno
di voi, o addirittura tutti. Grazie.

Un grazie particolare va anche al mio nido lontano da casa. Max, Rosaria, Fede
e Leti, grazie perché quando mi sento giù so che posso contare su una lasagna, una
partita a Fifa o Mario Kart, ma sopratutto, un’immancabile pizza al Setaccio.

Ai miei più cari amici: Ciccio, Sam, Nunzio e Davide. Sin dal momento in cui ci
siamo conosciuti, ho capito che la nostra amicizia sarebbe durata per sempre. Anche se
ci sentiamo poco e ci vediamo ancora meno, so con certezza che, così come io ci sarò
sempre per voi, anche voi ci sarete sempre per me.

Grazie a Mario, anzi, a Don Mario. Ogni giorno che passa sono sempre più convinto
della scelta che ho fatto. Ti ringrazio perché sei una presenza speciale e luminosa nella
mia vita, una guida che mi fa sentire più vicino a Dio. Grazie alla famiglia Russo, perché
la serata “pini figliocci” è un evento prioritario e fondamentale ogni volta che scendo.

Voglio ringraziare anche chi ha fatto crescere la mia aura di onnipotenza di ingegne-
re: Marco e Carlo siete stati gli artificieri che hanno fatto scoppiare in me un enorme
passione per quello che studio e che vorrei fare nella vita. Siete una fonte di ispirazione
sia per quello che fate sia per il modo in cui lo fate; spero di fare almeno la metà, o
perché no anche il doppio, di quello che avete fatto voi.

Adesso è cambiata la location: sono sul 20, davanti piazza Maggiore. È giusto
ringraziare anche la città che mi ha accolto a braccia super aperte per questi tre anni e
a tutte le persone che ho trovato qui.

Prima però apro una parentesi, perché c’è un’eccezione. Infatti, non ho conosciuto
il mio “carissimo Man” qui, ma è come se a Bologna fossimo ripartiti non da zero ma
da un po’ più di zero. Grazie perché con te le giornate non sono mai noiose, sempre
ricche di “UAU”, di “perché mi odi”, di infiniti turpiloqui che includono domande e
risposte. Grazie perché il “Forza man” prima di un esame c’è sempre stato, perché il
sabato è “pizza e birruni” rigorosamente Moretti, grazie perché non sei solo un semplice
coinquilino, ma sei e rimarrai sempre il “carissimo Man”.

Sono sceso dal 20 e sto andando a sedermi nel nostro posticino dove, forse, tutto è
iniziato e continua ad andare. Liu-Jo e poi all’improvviso sei arrivata, non so chi l’ha
deciso, e mi hai preso sempre più. Grazie perché con te posso essere un pagliaccio, un
bambino, un cuoco stellato e sopratutto una persona migliore.

Ad Andrea, Antonio, Andrea, Gaia, Toby, Mea, Gaia, Maria e Chiara. Accenti

diversi, personalità diverse, tutti diversi, ma sempre a partire quando Massimo organizza
qualcosa e sempre pronti a mangiare quando cucina qualcosa. Grazie perché avete reso
splendidi questi tre anni con un caffé, con una birra, con i tiramisù, con esami copiati,
con Maranathà e taaante altre cose.

Infine, non per importanza, le persone a cui ho voluto dedicare questo lavoro. A
nonna Rosaria: i tuoi "ma iu nun ti vuogghiu disturbari" fanno pensare tanto il contrario,
ma è per questo che sono molto apprezzati.

Grazie a tutti.

	7ad82ec528a9a2997446f58a02c24a5a2d7524d4cb51fc3e7277eb534af7dde0.pdf
	bc996dbeb07055a784f36209a51b47c9187096ab6beec25cda36aa65ca2a453b.pdf
	09d681c45325fd9d54fd07cb1366c79cd03e5d1f2de16dd36968448b89be67f3.pdf
	47a5988ba2962a26b2afe0a51c63e405225ef5bc410dba6c1c9f66daa82eb8d8.pdf
	98c2bd16b3b85c40d226e37c84b74ed36c8a614b96235b3e2c16aa2d77c747c7.pdf
	Conclusioni
	Sintesi dei risultati
	Miglioramenti e sviluppi futuri

	Bibliografia

	blank595x841
	98c2bd16b3b85c40d226e37c84b74ed36c8a614b96235b3e2c16aa2d77c747c7.pdf
	blank595x841
	98c2bd16b3b85c40d226e37c84b74ed36c8a614b96235b3e2c16aa2d77c747c7.pdf
	Ringraziamenti

	bc996dbeb07055a784f36209a51b47c9187096ab6beec25cda36aa65ca2a453b.pdf

	7ad82ec528a9a2997446f58a02c24a5a2d7524d4cb51fc3e7277eb534af7dde0.pdf

