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Figura 1: Sistema di sollevamento con attuatore SMA

Il progetto riguarda il controllo di un sistema di sollevamento con attuatore SMA, la cui dinamica
viene descritta dalle seguenti equazioni differenziali

Jω̇ = FSMAr1 − (mg + βr2ω)r2, (1a)

con FSMA = Kmax

1− 1

1 + exp(k
T−Tavg

Tdiff
)

 (ℓ− r1θ) (1b)

dove θ(t) rappresenta la posizione angolare della puleggia e ω(t) rappresenta la velocità angolare. Gli
altri parametri del sistema sono descritti come segue:

• r1: raggio interno puleggia

• r2: raggio esterno puleggia

• J : momento di inerzia

• m: carico di massa

• g: costante di gravitazione universale

• Kmax: rigidezza massima dell’attuatore

• T : temperatura (variabile di ingresso)

• β: coefficiente di attrito viscoso
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1 Espressione del sistema in forma di stato e calcolo del sistema
linearizzato intorno ad una coppia di equilibrio

Innanzitutto, esprimiamo il sistema (1) nella seguente forma di stato

ẋ = f(x, u) (2a)

y = h(x, u). (2b)

Pertanto, andiamo individuare lo stato x, l’ingresso u e l’uscita y del sistema. Supponiamo di potere
misurare in ogni istante la posizione angolare θ della puleggia. Da ciò deriva la y scelta.

x :=

[
θ

θ̇

]
, u := T, y := θ.

Coerentemente con questa scelta, ricaviamo dal sistema (1) la seguente espressione per le funzioni f ed h

f(x, u) := ẋ = ω̇ =

Kmax

1− 1

1+exp

(
k
u−Tavg
Tdiff

)
 (ℓ− r1x1)r1 − (mg + βr2x2)r2

J
h(x, u) := x1

Una volta calcolate f ed h esprimiamo (1) nella seguente forma di stato

[
ẋ1
ẋ2

]
=

[
f1(x, u)
f2(x, u)

]
=


x2

Kmax

1− 1

1+exp

(
k
u−Tavg
Tdiff

)
(ℓ−r1x1)r1−(mg+βr2x2)r2

J

 (3a)

y = h(x, u) = x1 (3b)

Per trovare la coppia di equilibrio (xe, ue) di (3), andiamo a risolvere il seguente sistema di equazioni

f(xe, ue) = 0 (4)

h(xe, ue) = 0 (5)

dal quale otteniamo (considerando i dati forniti per i quali θe =
π
3 )

xe :=

[
π
3
0

]
, ue =

Tdiff

k
· log

 1

1−
(

m·g·r2
Kmax·r1·(l−r1·x1e)

) − 1

+ Tavg = 47.6735 (6)

Definiamo le variabili alle variazioni δx, δu e δy come

δx = ∆x, δu = ∆u, δy = ∆y.

L’evoluzione del sistema espressa nelle variabili alle variazioni puo’ essere approssimativamente descritta
mediante il seguente sistema lineare

δẋ = Aδx+Bδu (7a)

δy = Cδx+Dδu, (7b)
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dove le matrici A, B, C e D vengono calcolate come

A =

[
∂f1(x,u)

∂x1

∂f1(x,u)
x2

∂f2(x,u)
∂x1

∂f2(x,u)
∂x2

]
x=xe,u=ue

=


0 1

Kmax·r21 ·

 1

exp

(
k·

ue−Tavg
Tdiff

)
+1

−1

J −β·r22
J

 =

[
0 1

−0.00011315 −0.0001684

]
(8a)

B =

[
∂f1(x,u)

∂u
∂f2(x,u)

∂u

]
x=xe,u=ue

=


0

Kmax·k·r1·exp
(
k
ue−Tavg
Tdiff

)
·(l−r1·x1e)

J ·Tdiff

(
exp

(
k·ue−Tavg

Tdiff

)
+1

)2

 =

[
0

0.0056826

]
(8b)

C =
[
∂h(y,u)

∂y
∂h(y,u)

∂y

]
x=xe,u=ue

=
[
1 0

]
(8c)

D =
[
∂h(x,u)

∂u
∂h(x,u)

∂u

]
x=xe,u=ue

= 0 (8d)

Per quanto riguarda i calcoli delle matrici, questi ultimi sono stati in un primo momento effettuati
a mano e successivamente controllati tramite la funzione jacobian di matlab con l’utilizzo di variabili
syms per ottenere i risultati con i parametri.

2 Calcolo Funzione di Trasferimento

In questa sezione, andiamo a calcolare la funzione di trasferimento G(s) dall’ingresso δu all’uscita δy
mediante la seguente formula

G(s) = C(sI −A)−1B +D =
0.005685

s2 + 0.0001684s+ 8.299 x 10−5
. (9)

Dunque il sistema linearizzato (7) è caratterizzato dalla funzione di trasferimento (9) con 2 poli complessi
coniugati p1 = −0.0001 + 0.0091i , p2 = −0.0001 − 0.0091i e nessuno zero. In Figura 2 mostriamo il
corrispondente diagramma di Bode.

Figura 2: Diagramma di Bode G(s)
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3 Mappatura specifiche del regolatore

Le specifiche da soddisfare sono

1) errore a regime |e∞| ≤ e∗ = 0.01 in risposta a un gradino w(t) = 1(t) e d(t) = 1(t)

2) margine di fase Mf ≥ 40°

3) sovraelongazione percentuale massima S% ≤ 7%

4) tempo di assestamento a Ta,ϵ = 0.1s, con ϵ% = 5%

5) disturbo sull’uscita d(t), con banda nel range di pulsazioni [0, 0.05], abbattuto di almeno 50 dB

6) disturbo di misura N(t), con banda nel range di pulsazioni [104, 106], abbattuto di almeno 100 dB

Andiamo ad effettuare la mappatura punto per punto le specifiche richieste.

3.1 Vincolo sulla sovraelongazione S%

Il vincolo sulla sovraelongazione viene realizzato agendo sul margine di fase.

1 Mf_esp = 40

2
3 % calcolo specifiche S% -> margine di fase

4 xi_star = abs(log(S_star /100))/sqrt(pi^2 + log(S_star /100) ^2);

5 Mf = max(xi_star *100, Mf_esp);

Otteniamo un margine di fase pari a 64.6082.

3.2 Specifica sul tempo di assestamento Ta,5

Per quanto concerne la specifica sul tempo di assestamento, agiamo sulla pulsazione critica minima ωc.

1 T_star = 0.1

2
3 % usiamo 300 in quanto abbiamo ragionato al 5%

4 omega_Ta_min = 1e-6;

5 omega_Ta_max = 300/(Mf * T_star)

6 omega_c_min = omega_Ta_max

Otteniamo una ωcmin = 46.4337.

3.3 Patch specifiche disturbo sull’uscita

1 A_d = 50;

2
3 % Per la specifica della pulsazione minima del disturbo sull 'uscita uso

un valore molto vicino allo 0 in quanto log (0) non esiste

4 omega_d_min = 1e^-1;

5 omega_d_max = 0.05;

6 Bnd_d_x = [omega_d_min; omega_d_max; omega_d_max; omega_d_min ];

7 Bnd_d_y = [A_d; A_d; -150; -150];

8 patch(Bnd_d_x , Bnd_d_y ,'r','FaceAlpha ' ,0.2,'EdgeAlpha ' ,0);
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3.4 Patch specifiche disturbo di misura

1 A_n = 100;

2 omega_n_min = 1e5;

3 omega_n_max = 1e7;

4 Bnd_n_x = [omega_n_min; omega_n_max; omega_n_max; omega_n_min ];

5 Bnd_n_y = [-A_n; -A_n; 100; 100];

6 patch(Bnd_n_x , Bnd_n_y ,'y','FaceAlpha ' ,0.2,'EdgeAlpha ' ,0);

3.5 Patch specifiche sovraelongazione S%

1 omega_c_min = omega_Ta_max;

2 omega_c_max = omega_n_min;

3 phi_up = Mf - 180;

4 phi_low = -360; % lower bound per il plot

5 Bnd_Mf_x = [omega_c_min; omega_c_max; omega_c_max; omega_c_min ];

6 Bnd_Mf_y = [phi_up; phi_up; phi_low; phi_low ];

7 patch(Bnd_Mf_x , Bnd_Mf_y ,'g','FaceAlpha ' ,0.2,'EdgeAlpha ' ,0);

3.6 Patch specifiche tempo di assestamento

1 omega_Ta_min = 1e-6;

2 omega_Ta_max = 300/(Mf * T_star)

3 Bnd_Ta_x = [omega_Ta_min; omega_Ta_max; omega_Ta_max; omega_Ta_min ];

4 Bnd_Ta_y = [0; 0; -150; -150];

5 patch(Bnd_Ta_x , Bnd_Ta_y ,'b','FaceAlpha ' ,0.2,'EdgeAlpha ' ,0);

Pertanto, in Figura 3, mostriamo il diagramma di Bode della funzione di trasferimento G(s) con le
zone proibite emerse dalla mappatura delle specifiche.

Figura 3: Diagramma di Bode G(s) con specifiche mappate
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4 Sintesi del regolatore statico

In questa sezione progettiamo il regolatore statico Rs(s) partendo dalle analisi fatte in sezione 3.

4.1 Considerazione sulla realizzazione

Di seguito le considerazioni fatte sull’errore a regime. Trattandosi di una specifica che non pone un
vincolo di errore a regime nullo (|e∞| = 0) e considerando la generica forma del regolatore statico us

sk
,

avevamo la possibilità di scegliere tra R(s) = µs ≥ µ∗, dove mu∗ = D∗+W ∗

e∗ e R(s) = µs

s .

Abbiamo scelto di considerare un guadano µs ≥ µ∗, dove oltre al calcolo di µ∗ abbiamo considerato
anche la specifica imposta dal disturbo d(t), andando a scegliere come regolatore statico il vincolo più
stringente (espresso dalla scelta del massimo nel codice matlab).

1 mu_s_error = (WW + DD)/e_star/abs(evalfr(GG,j*0));

2 G_omega_d_max = abs(evalfr(GG ,j*omega_d_max));

3 mu_s_d = 10^( A_d /20)/G_omega_d_max;

4 R_s = max(mu_s_error ,mu_s_d)

Il risultato dei due guadagni è stato il seguente:

µs =
WW+DD

e∗

G(0)
= 2.9198, µsd =

10
Ad
20

G(ωdmax)
= 134.4563

Dunque, definiamo la funzione estesa Ge(s) = Rs(s)G(s) e, in Figura 4, mostriamo il suo diagramma di
Bode per verificare se e quali zone proibite vengono attraversate.

Rs = 134.4563 (10)

Ge(s) = GG ∗Rs =
0.005685

s2 + 0.0001684s+ 8.299 x 10−5
∗ 134.4563 =

0.7643

s2 + 0.0001684s+ 8.299 x10−5
(11)

Da Figura 4, emerge

Figura 4: Diagramma di Bode Ge(s) con specifiche mappate

6



5 Sintesi del regolatore dinamico

In questa sezione, progettiamo il regolatore dinamico Rd(s). Dalle analisi fatte in Sezione 4, notiamo
di essere nello Scenario di tipo B. Dunque, progettiamo Rd(s) ricorrendo ad una rete anticipatrice.

Per realizzarla, partiamo dalla formula generale che la descrive:

Rd(s) =
1 + τs

1 + ατs
0 < α < 1

.
Per il calcolo di ατ e τ facciamo uso delle formule di inversione:

τ =
M∗ − cosφ∗

ω∗
c sinφ

∗ , ατ =
cosφ∗ − 1

M∗

ω∗
c sinφ

∗

.
Come mostrato nel codice matlab sottostante, consideriamo un margine di fase di partenza pari a

quello calcolato nella mappatura delle specifiche con l’aggiunta di un valore 5 per essere più conservativi.

Per quanto concerne ω∗
c il valore imposto è 200.

1 % prendiamo margine + 5 per essere conservativi

2 Mf_star = Mf + 5;

3 omega_c_star = 200;

4
5 % modulo della G estesa in omega_c_star

6 mag_omega_c_star_dB = abs(evalfr(GG_e ,j*omega_c_star));

7
8 % fase della G estesa in omega_c_star

9 arg_omega_c_star = rad2deg(angle(evalfr(GG_e ,j*omega_c_star)));

10
11 M_star = 1/ mag_omega_c_star_dB;

12 phi_star = Mf_star - 180 - arg_omega_c_star;

13
14 tau = (M_star -cos(phi_star*pi /180))/( omega_c_star*sin(phi_star*pi /180));

15 alpha_tau = (cos(phi_star*pi/180) - 1/ M_star)/( omega_c_star*sin(phi_star

*pi /180));

16 alpha = alpha_tau / tau;

17 R_d = (1 + tau*s)/(1 + alpha * tau*s);

18 L = R_d*G_e;

In Figura 5, mostriamo il diagramma di Bode della funzione d’anello L(s) = Rd(s)Ge(s)
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Figura 5: Diagramma di Bode L

Possiamo notare come non vengano rispettate tutte le specifiche. In particolare, la funzione non
rispetta la specifica sul disturbo di misura.

Figura 6: Dettaglio diagramma di Bode L
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Al fine di evitare che la funzione attraversi la zona, usiamo un polo in alta frequenza (nello specifico a
ω = 4000. Questo comporta un abbassamento di 20dB/dec della funzione in termini di diagramma delle
ampiezze e un abbassamento della fase di 90°.

Polo inserito :
1

1 + s
4000

Per aggiungere l’effetto del polo al regolatore lo moltiplichiamo per la rete anticipatrice calcolata.

1 % polo ad alta frequenza

2 R_high_frequency = 1/(1 + s/4e3);

3
4 RR_d = (1 + tau*s)/(1 + alpha * tau*s)*R_high_frequency;

5
6 % funzione di anello

7 LL = R_d*G_e;

In Figura 7, mostriamo il diagramma di Bode della funzione d’anello L(s) = Rd(s)Ge(s)

Figura 7: Diagramma di Bode L

9



In Figura 8, mostriamo la risposta al gradino della funzione d’anello L(s). Il gradino considerato in
base alla specifica è 1(t) e la funzione step è stata applicata sulla funzione di sensitività complementare:

F (s) =
R(s)G(s)

1 +R(s)G(s)
=

L(s)

1 + L(s)

Figura 8: Risposta al gradino di L

10



6 Test sul sistema linearizzato

In questa sezione, testiamo l’efficacia del controllore progettato sul sistema linearizzato con w(t) =
1(t), d(t) =

∑3
k=1 sin(0.01kt) e n(t) =

∑3
k=1 sin(10

4kt)

6.1 Test con d(t) =
∑3

k=1 sin(0.01kt)

Figura 9: Comportamento sistema linearizzato con disturbo sull’uscita

6.2 Test con n(t) =
∑3

k=1 sin(10
4kt)

Figura 10: Comportamento sistema linearizzato con disturbo di misura
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6.3 Simulink linearizzato

Abbiamo considerato lo schema a blocchi del sistema linearizzato e valutato la risposta avendo come
x il punto di equilibrio. Specifiche sui blocchi inseriti:

• gradino all’interno del blocco step: WW = 1 con step time = 0 per simulare il gradino

• ampiezza e frequenza del blocco relativo al disturbo di misura: ampiezza di 0.01, frequenza di
1000 rad

s

Sistema linearizzato

Figura 11: Sistema linearizzato Simulink

Risposta linearizzato

Figura 12: Risposta sistema linearizzato
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7 Test sul sistema non lineare

In questa sezione, testiamo l’efficacia del controllore progettato sul modello non lineare con ingresso
x che coincide con il suo punto di equilibrio.Specifiche sui blocchi inseriti:

• gradino all’interno del blocco step: WW = 1 con step time = 0 per simulare il gradino

• ampiezza e frequenza del blocco relativo al disturbo di misura: ampiezza di 0.01, frequenza di
1000 rad

s

• ampiezza e frequenza del blocco relativo al disturbo sull’uscita: ampiezza di 0.01, frequenza di
0.01 rad

s

Sistema non linearizzato

Figura 13: Sistema non linearizzato Simulink

Risposta non linearizzato

Figura 14: Risposta sistema non linearizzato
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8 Punti opzionali

8.1 Secondo punto

Ci focalizziamo sulla risposta del sistema non lineare quando sottoposto a un riferimento costante,
θ(t) ≡ θe . L’obiettivo principale consiste nell’esplorare il range di condizioni iniziali dello stato del
sistema in anello chiuso, concentrandoci sull’intorno del punto di equilibrio. Questa analisi mira a fornire
una comprensione dettagliata di come variazioni iniziali nello stato del sistema possano influenzare la
convergenza dell’uscita del sistema a h(xe, ue). Avendo x1 = θe =

π
3 come riferimento, agiamo sul valore

di x2, facendolo variare per vedere come cambia la risposta.

Figura 15: x2 = x2e − 1

Figura 16: x2 = x2e + 1
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Figura 17: x2 = x2e − 3

Figura 18: x2 = x2e + 3
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Figura 19: x2 = x2e − 6

Figura 20: x2 = x2e − 6

16



Figura 21: x2 = x2e − 10

Figura 22: x2 = x2e + 10
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Figura 23: x2 = x2e − 50

Figura 24: x2 = x2e + 50
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Per valori compresi tra -50 e +10, dopo un certo intervallo di tempo si stabilizza, come si nota in
Figura 16-23. Diversamente, per valori molto superiori di 10 (Figura 24), il sistema tende ad essere
instabile.

8.2 Terzo punto

Un aspetto fondamentale è la valutazione della robustezza del controllore rispetto alle variazioni
dell’ampiezza dei riferimenti a gradino, poiché tali variazioni possono influire significativamente sul com-
portamento del sistema. Nel corso di questa analisi, ci proponiamo di esplorare il range di ampiezze di
riferimenti a gradino per i quali il controllore mantiene un controllo efficace sul sistema non lineare.

Figura 25: Risposta al gradino di ampiezza 1

Figura 26: Risposta al gradino di ampiezza 2
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Nella Figura 25 e nella Figura 26, osserviamo che per valori di ampiezza inferiori o uguali a 2, il
sistema non lineare presenta un comportamento simile alla risposta al gradino del sistema linearizzato.

Figura 27: Risposta al gradino di ampiezza 5

Figura 28: Risposta al gradino di ampiezza 10

Per valori superiori a 5, dopo un certo intervallo di tempo, il sistema si allontana dalla stabilità, come
evidenziato nelle Figure 27 e 28.
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9 Conclusioni

Durante lo svolgimento del progetto, partendo dalla dinamica assegnata, fortemente non lineare,
abbiamo provveduto alla linearizzazione del sistema, calcolo della funzione di trasferimento, progetto del
regolatore per soddisfare le specifiche fornite e test del sistema linearizzato e non linearizzato.

I test sul linearizzato hanno rispettato tutte le specifiche fornite dal progetto, in termini di tempo
di assestamento, non violazione dei vincoli su fase, disturbi e pulsazione minima e anche durante i test
con disturbi di misura o disturbi sull’uscita non ci sono state discrepanze tra la risposta attesa e quella
ottenuta.

Discorso diverso per il sistema non linearizzato, la cui problematica più evidente ha riguardato il
tempo di assestamento: seppure a fronte di variazioni sulle condizioni iniziali il sistema ottenesse una
risposta stabile, quest’ultima necessitava di un tempo di assestamento dell’ordine di 102, valore che eccede
di 3 ordini di grandezza quello imposto da specifica. Nella realtà, un sistema con una dinamica fortemente
instabile come quello da noi analizzato non sarebbe proponibile a causa di un tempo di assestamento
eccessivamente oltre le specifiche richieste.
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